1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 29 * All rights reserved. 30 */ 31 32 /* Copyright (c) 2006, The Ohio State University. All rights reserved. 33 * 34 * Portions of this source code is developed by the team members of 35 * The Ohio State University's Network-Based Computing Laboratory (NBCL), 36 * headed by Professor Dhabaleswar K. (DK) Panda. 37 * 38 * Acknowledgements to contributions from developors: 39 * Ranjit Noronha: noronha@cse.ohio-state.edu 40 * Lei Chai : chail@cse.ohio-state.edu 41 * Weikuan Yu : yuw@cse.ohio-state.edu 42 * 43 */ 44 45 #pragma ident "@(#)nfs3_vnops.c 1.272 05/10/11 SMI" 46 47 #include <sys/param.h> 48 #include <sys/types.h> 49 #include <sys/systm.h> 50 #include <sys/cred.h> 51 #include <sys/time.h> 52 #include <sys/vnode.h> 53 #include <sys/vfs.h> 54 #include <sys/file.h> 55 #include <sys/filio.h> 56 #include <sys/uio.h> 57 #include <sys/buf.h> 58 #include <sys/mman.h> 59 #include <sys/pathname.h> 60 #include <sys/dirent.h> 61 #include <sys/debug.h> 62 #include <sys/vmsystm.h> 63 #include <sys/fcntl.h> 64 #include <sys/flock.h> 65 #include <sys/swap.h> 66 #include <sys/errno.h> 67 #include <sys/strsubr.h> 68 #include <sys/sysmacros.h> 69 #include <sys/kmem.h> 70 #include <sys/cmn_err.h> 71 #include <sys/pathconf.h> 72 #include <sys/utsname.h> 73 #include <sys/dnlc.h> 74 #include <sys/acl.h> 75 #include <sys/systeminfo.h> 76 #include <sys/atomic.h> 77 #include <sys/policy.h> 78 #include <sys/sdt.h> 79 80 #include <rpc/types.h> 81 #include <rpc/auth.h> 82 #include <rpc/clnt.h> 83 84 #include <nfs/nfs.h> 85 #include <nfs/nfs_clnt.h> 86 #include <nfs/rnode.h> 87 #include <nfs/nfs_acl.h> 88 #include <nfs/lm.h> 89 90 #include <vm/hat.h> 91 #include <vm/as.h> 92 #include <vm/page.h> 93 #include <vm/pvn.h> 94 #include <vm/seg.h> 95 #include <vm/seg_map.h> 96 #include <vm/seg_kpm.h> 97 #include <vm/seg_vn.h> 98 99 #include <fs/fs_subr.h> 100 101 #include <sys/ddi.h> 102 #include <rpc/rpc_rdma.h> 103 104 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 105 cred_t *); 106 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 107 stable_how *); 108 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *); 109 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *); 110 static int nfs3_accessx(void *, int, cred_t *); 111 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 112 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 113 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl, 114 int, vnode_t **, cred_t *, int); 115 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *); 116 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 117 int, vnode_t **, cred_t *); 118 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 119 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 120 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 121 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *); 122 static int nfs3_bio(struct buf *, stable_how *, cred_t *); 123 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 124 page_t *[], size_t, struct seg *, caddr_t, 125 enum seg_rw, cred_t *); 126 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 127 cred_t *); 128 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 129 int, cred_t *); 130 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 131 int, cred_t *); 132 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *); 133 static void nfs3_set_mod(vnode_t *); 134 static void nfs3_get_commit(vnode_t *); 135 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t); 136 #if 0 /* unused */ 137 #ifdef DEBUG 138 static int nfs3_no_uncommitted_pages(vnode_t *); 139 #endif 140 #endif /* unused */ 141 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 142 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *); 143 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3, 144 cred_t *); 145 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3, 146 cred_t *); 147 static void nfs3_delmap_callback(struct as *, void *, uint_t); 148 149 /* 150 * Error flags used to pass information about certain special errors 151 * which need to be handled specially. 152 */ 153 #define NFS_EOF -98 154 #define NFS_VERF_MISMATCH -97 155 156 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 157 #define ALIGN64(x, ptr, sz) \ 158 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 159 if (x) { \ 160 x = sizeof (uint64_t) - (x); \ 161 sz -= (x); \ 162 ptr += (x); \ 163 } 164 165 /* 166 * These are the vnode ops routines which implement the vnode interface to 167 * the networked file system. These routines just take their parameters, 168 * make them look networkish by putting the right info into interface structs, 169 * and then calling the appropriate remote routine(s) to do the work. 170 * 171 * Note on directory name lookup cacheing: If we detect a stale fhandle, 172 * we purge the directory cache relative to that vnode. This way, the 173 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 174 * more details on rnode locking. 175 */ 176 177 static int nfs3_open(vnode_t **, int, cred_t *); 178 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *); 179 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *, 180 caller_context_t *); 181 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *, 182 caller_context_t *); 183 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *); 184 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *); 185 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *, 186 caller_context_t *); 187 static int nfs3_access(vnode_t *, int, int, cred_t *); 188 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *); 189 static int nfs3_fsync(vnode_t *, int, cred_t *); 190 static void nfs3_inactive(vnode_t *, cred_t *); 191 static int nfs3_lookup(vnode_t *, char *, vnode_t **, 192 struct pathname *, int, vnode_t *, cred_t *); 193 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl, 194 int, vnode_t **, cred_t *, int); 195 static int nfs3_remove(vnode_t *, char *, cred_t *); 196 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *); 197 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 198 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, 199 vnode_t **, cred_t *); 200 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *); 201 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *, 202 cred_t *); 203 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *); 204 static int nfs3_fid(vnode_t *, fid_t *); 205 static int nfs3_rwlock(vnode_t *, int, caller_context_t *); 206 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *); 207 static int nfs3_seek(vnode_t *, offset_t, offset_t *); 208 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *, 209 page_t *[], size_t, struct seg *, caddr_t, 210 enum seg_rw, cred_t *); 211 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *); 212 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, 213 size_t, uchar_t, uchar_t, uint_t, cred_t *); 214 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, 215 size_t, uchar_t, uchar_t, uint_t, cred_t *); 216 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 217 struct flk_callback *, cred_t *); 218 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t, 219 cred_t *, caller_context_t *); 220 static int nfs3_realvp(vnode_t *, vnode_t **); 221 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, 222 size_t, uint_t, uint_t, uint_t, cred_t *); 223 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *); 224 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 225 cred_t *); 226 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *); 227 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 228 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 229 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *); 230 231 struct vnodeops *nfs3_vnodeops; 232 233 const fs_operation_def_t nfs3_vnodeops_template[] = { 234 VOPNAME_OPEN, nfs3_open, 235 VOPNAME_CLOSE, nfs3_close, 236 VOPNAME_READ, nfs3_read, 237 VOPNAME_WRITE, nfs3_write, 238 VOPNAME_IOCTL, nfs3_ioctl, 239 VOPNAME_GETATTR, nfs3_getattr, 240 VOPNAME_SETATTR, nfs3_setattr, 241 VOPNAME_ACCESS, nfs3_access, 242 VOPNAME_LOOKUP, nfs3_lookup, 243 VOPNAME_CREATE, nfs3_create, 244 VOPNAME_REMOVE, nfs3_remove, 245 VOPNAME_LINK, nfs3_link, 246 VOPNAME_RENAME, nfs3_rename, 247 VOPNAME_MKDIR, nfs3_mkdir, 248 VOPNAME_RMDIR, nfs3_rmdir, 249 VOPNAME_READDIR, nfs3_readdir, 250 VOPNAME_SYMLINK, nfs3_symlink, 251 VOPNAME_READLINK, nfs3_readlink, 252 VOPNAME_FSYNC, nfs3_fsync, 253 VOPNAME_INACTIVE, (fs_generic_func_p) nfs3_inactive, 254 VOPNAME_FID, nfs3_fid, 255 VOPNAME_RWLOCK, nfs3_rwlock, 256 VOPNAME_RWUNLOCK, (fs_generic_func_p) nfs3_rwunlock, 257 VOPNAME_SEEK, nfs3_seek, 258 VOPNAME_FRLOCK, nfs3_frlock, 259 VOPNAME_SPACE, nfs3_space, 260 VOPNAME_REALVP, nfs3_realvp, 261 VOPNAME_GETPAGE, nfs3_getpage, 262 VOPNAME_PUTPAGE, nfs3_putpage, 263 VOPNAME_MAP, (fs_generic_func_p) nfs3_map, 264 VOPNAME_ADDMAP, (fs_generic_func_p) nfs3_addmap, 265 VOPNAME_DELMAP, nfs3_delmap, 266 VOPNAME_DUMP, nfs_dump, /* there is no separate nfs3_dump */ 267 VOPNAME_PATHCONF, nfs3_pathconf, 268 VOPNAME_PAGEIO, nfs3_pageio, 269 VOPNAME_DISPOSE, (fs_generic_func_p) nfs3_dispose, 270 VOPNAME_SETSECATTR, nfs3_setsecattr, 271 VOPNAME_GETSECATTR, nfs3_getsecattr, 272 VOPNAME_SHRLOCK, nfs3_shrlock, 273 NULL, NULL 274 }; 275 276 /* 277 * XXX: This is referenced in modstubs.s 278 */ 279 struct vnodeops * 280 nfs3_getvnodeops(void) 281 { 282 return (nfs3_vnodeops); 283 } 284 285 /* ARGSUSED */ 286 static int 287 nfs3_open(vnode_t **vpp, int flag, cred_t *cr) 288 { 289 int error; 290 struct vattr va; 291 rnode_t *rp; 292 vnode_t *vp; 293 294 vp = *vpp; 295 if (nfs_zone() != VTOMI(vp)->mi_zone) 296 return (EIO); 297 rp = VTOR(vp); 298 mutex_enter(&rp->r_statelock); 299 if (rp->r_cred == NULL) { 300 crhold(cr); 301 rp->r_cred = cr; 302 } 303 mutex_exit(&rp->r_statelock); 304 305 /* 306 * If there is no cached data or if close-to-open 307 * consistency checking is turned off, we can avoid 308 * the over the wire getattr. Otherwise, if the 309 * file system is mounted readonly, then just verify 310 * the caches are up to date using the normal mechanism. 311 * Else, if the file is not mmap'd, then just mark 312 * the attributes as timed out. They will be refreshed 313 * and the caches validated prior to being used. 314 * Else, the file system is mounted writeable so 315 * force an over the wire GETATTR in order to ensure 316 * that all cached data is valid. 317 */ 318 if (vp->v_count > 1 || 319 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 320 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 321 if (vn_is_readonly(vp)) 322 error = nfs3_validate_caches(vp, cr); 323 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 324 PURGE_ATTRCACHE(vp); 325 error = 0; 326 } else { 327 va.va_mask = AT_ALL; 328 error = nfs3_getattr_otw(vp, &va, cr); 329 } 330 } else 331 error = 0; 332 333 return (error); 334 } 335 336 static int 337 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 338 { 339 rnode_t *rp; 340 int error; 341 struct vattr va; 342 343 /* 344 * zone_enter(2) prevents processes from changing zones with NFS files 345 * open; if we happen to get here from the wrong zone we can't do 346 * anything over the wire. 347 */ 348 if (VTOMI(vp)->mi_zone != nfs_zone()) { 349 /* 350 * We could attempt to clean up locks, except we're sure 351 * that the current process didn't acquire any locks on 352 * the file: any attempt to lock a file belong to another zone 353 * will fail, and one can't lock an NFS file and then change 354 * zones, as that fails too. 355 * 356 * Returning an error here is the sane thing to do. A 357 * subsequent call to VN_RELE() which translates to a 358 * nfs3_inactive() will clean up state: if the zone of the 359 * vnode's origin is still alive and kicking, an async worker 360 * thread will handle the request (from the correct zone), and 361 * everything (minus the commit and final nfs3_getattr_otw() 362 * call) should be OK. If the zone is going away 363 * nfs_async_inactive() will throw away cached pages inline. 364 */ 365 return (EIO); 366 } 367 368 /* 369 * If we are using local locking for this filesystem, then 370 * release all of the SYSV style record locks. Otherwise, 371 * we are doing network locking and we need to release all 372 * of the network locks. All of the locks held by this 373 * process on this file are released no matter what the 374 * incoming reference count is. 375 */ 376 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 377 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 378 cleanshares(vp, ttoproc(curthread)->p_pid); 379 } else 380 nfs_lockrelease(vp, flag, offset, cr); 381 382 if (count > 1) 383 return (0); 384 385 /* 386 * If the file has been `unlinked', then purge the 387 * DNLC so that this vnode will get reycled quicker 388 * and the .nfs* file on the server will get removed. 389 */ 390 rp = VTOR(vp); 391 if (rp->r_unldvp != NULL) 392 dnlc_purge_vp(vp); 393 394 /* 395 * If the file was open for write and there are pages, 396 * then if the file system was mounted using the "no-close- 397 * to-open" semantics, then start an asynchronous flush 398 * of the all of the pages in the file. 399 * else the file system was not mounted using the "no-close- 400 * to-open" semantics, then do a synchronous flush and 401 * commit of all of the dirty and uncommitted pages. 402 * 403 * The asynchronous flush of the pages in the "nocto" path 404 * mostly just associates a cred pointer with the rnode so 405 * writes which happen later will have a better chance of 406 * working. It also starts the data being written to the 407 * server, but without unnecessarily delaying the application. 408 */ 409 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 410 if (VTOMI(vp)->mi_flags & MI_NOCTO) { 411 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC, cr); 412 if (error == EAGAIN) 413 error = 0; 414 } else 415 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 416 if (!error) { 417 mutex_enter(&rp->r_statelock); 418 error = rp->r_error; 419 rp->r_error = 0; 420 mutex_exit(&rp->r_statelock); 421 } 422 } else { 423 mutex_enter(&rp->r_statelock); 424 error = rp->r_error; 425 rp->r_error = 0; 426 mutex_exit(&rp->r_statelock); 427 } 428 429 /* 430 * If RWRITEATTR is set, then issue an over the wire GETATTR to 431 * refresh the attribute cache with a set of attributes which 432 * weren't returned from a WRITE. This will enable the close- 433 * to-open processing to work. 434 */ 435 if (rp->r_flags & RWRITEATTR) 436 (void) nfs3_getattr_otw(vp, &va, cr); 437 438 return (error); 439 } 440 441 /* ARGSUSED */ 442 static int 443 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr) 444 { 445 mntinfo_t *mi; 446 READ3args args; 447 READ3uiores res; 448 int tsize; 449 offset_t offset; 450 ssize_t count; 451 int error; 452 int douprintf; 453 failinfo_t fi; 454 char *sv_hostname; 455 456 mi = VTOMI(vp); 457 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 458 sv_hostname = VTOR(vp)->r_server->sv_hostname; 459 460 douprintf = 1; 461 args.file = *VTOFH3(vp); 462 fi.vp = vp; 463 fi.fhp = (caddr_t)&args.file; 464 fi.copyproc = nfs3copyfh; 465 fi.lookupproc = nfs3lookup; 466 fi.xattrdirproc = acl_getxattrdir3; 467 468 res.uiop = uiop; 469 470 res.wlist = NULL; 471 472 offset = uiop->uio_loffset; 473 count = uiop->uio_resid; 474 475 do { 476 if (mi->mi_io_kstats) { 477 mutex_enter(&mi->mi_lock); 478 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 479 mutex_exit(&mi->mi_lock); 480 } 481 482 do { 483 tsize = MIN(mi->mi_tsize, count); 484 args.offset = (offset3)offset; 485 args.count = (count3)tsize; 486 res.size = (uint_t)tsize; 487 error = rfs3call(mi, NFSPROC3_READ, 488 xdr_READ3args, (caddr_t)&args, 489 xdr_READ3uiores, (caddr_t)&res, cr, 490 &douprintf, &res.status, 0, &fi); 491 } while (error == ENFS_TRYAGAIN); 492 493 if (mi->mi_io_kstats) { 494 mutex_enter(&mi->mi_lock); 495 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 496 mutex_exit(&mi->mi_lock); 497 } 498 499 if (error) 500 return (error); 501 502 error = geterrno3(res.status); 503 if (error) 504 return (error); 505 506 if (res.count != res.size) { 507 zcmn_err(getzoneid(), CE_WARN, 508 "nfs3_directio_read: server %s returned incorrect amount", 509 sv_hostname); 510 return (EIO); 511 } 512 count -= res.count; 513 offset += res.count; 514 if (mi->mi_io_kstats) { 515 mutex_enter(&mi->mi_lock); 516 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 517 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 518 mutex_exit(&mi->mi_lock); 519 } 520 lwp_stat_update(LWP_STAT_INBLK, 1); 521 } while (count && !res.eof); 522 523 return (0); 524 } 525 526 /* ARGSUSED */ 527 static int 528 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 529 caller_context_t *ct) 530 { 531 rnode_t *rp; 532 u_offset_t off; 533 offset_t diff; 534 int on; 535 size_t n; 536 caddr_t base; 537 uint_t flags; 538 int error = 0; 539 mntinfo_t *mi; 540 541 rp = VTOR(vp); 542 mi = VTOMI(vp); 543 544 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 545 546 if (nfs_zone() != mi->mi_zone) 547 return (EIO); 548 549 if (vp->v_type != VREG) 550 return (EISDIR); 551 552 if (uiop->uio_resid == 0) 553 return (0); 554 555 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 556 return (EINVAL); 557 558 /* 559 * Bypass VM if caching has been disabled (e.g., locking) or if 560 * using client-side direct I/O and the file is not mmap'd and 561 * there are no cached pages. 562 */ 563 if ((vp->v_flag & VNOCACHE) || 564 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 565 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 566 return (nfs3_directio_read(vp, uiop, cr)); 567 } 568 569 do { 570 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 571 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 572 n = MIN(MAXBSIZE - on, uiop->uio_resid); 573 574 error = nfs3_validate_caches(vp, cr); 575 if (error) 576 break; 577 578 mutex_enter(&rp->r_statelock); 579 diff = rp->r_size - uiop->uio_loffset; 580 mutex_exit(&rp->r_statelock); 581 if (diff <= 0) 582 break; 583 if (diff < n) 584 n = (size_t)diff; 585 586 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, S_READ); 587 588 error = uiomove(base + on, n, UIO_READ, uiop); 589 590 if (!error) { 591 /* 592 * If read a whole block or read to eof, 593 * won't need this buffer again soon. 594 */ 595 mutex_enter(&rp->r_statelock); 596 if (n + on == MAXBSIZE || 597 uiop->uio_loffset == rp->r_size) 598 flags = SM_DONTNEED; 599 else 600 flags = 0; 601 mutex_exit(&rp->r_statelock); 602 error = segmap_release(segkmap, base, flags); 603 } else 604 (void) segmap_release(segkmap, base, 0); 605 } while (!error && uiop->uio_resid > 0); 606 607 return (error); 608 } 609 610 /* ARGSUSED */ 611 static int 612 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 613 caller_context_t *ct) 614 { 615 rlim64_t limit = uiop->uio_llimit; 616 rnode_t *rp; 617 u_offset_t off; 618 caddr_t base; 619 uint_t flags; 620 int remainder; 621 size_t n; 622 int on; 623 int error; 624 int resid; 625 offset_t offset; 626 mntinfo_t *mi; 627 uint_t bsize; 628 629 rp = VTOR(vp); 630 631 if (vp->v_type != VREG) 632 return (EISDIR); 633 634 mi = VTOMI(vp); 635 if (nfs_zone() != mi->mi_zone) 636 return (EIO); 637 if (uiop->uio_resid == 0) 638 return (0); 639 640 if (ioflag & FAPPEND) { 641 struct vattr va; 642 643 /* 644 * Must serialize if appending. 645 */ 646 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 647 nfs_rw_exit(&rp->r_rwlock); 648 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 649 INTR(vp))) 650 return (EINTR); 651 } 652 653 va.va_mask = AT_SIZE; 654 error = nfs3getattr(vp, &va, cr); 655 if (error) 656 return (error); 657 uiop->uio_loffset = va.va_size; 658 } 659 660 offset = uiop->uio_loffset + uiop->uio_resid; 661 662 if (uiop->uio_loffset < 0 || offset < 0) 663 return (EINVAL); 664 665 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 666 limit = MAXOFFSET_T; 667 668 /* 669 * Check to make sure that the process will not exceed 670 * its limit on file size. It is okay to write up to 671 * the limit, but not beyond. Thus, the write which 672 * reaches the limit will be short and the next write 673 * will return an error. 674 */ 675 remainder = 0; 676 if (offset > limit) { 677 remainder = offset - limit; 678 uiop->uio_resid = limit - uiop->uio_loffset; 679 if (uiop->uio_resid <= 0) { 680 proc_t *p = ttoproc(curthread); 681 682 uiop->uio_resid += remainder; 683 mutex_enter(&p->p_lock); 684 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 685 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 686 mutex_exit(&p->p_lock); 687 return (EFBIG); 688 } 689 } 690 691 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 692 return (EINTR); 693 694 /* 695 * Bypass VM if caching has been disabled (e.g., locking) or if 696 * using client-side direct I/O and the file is not mmap'd and 697 * there are no cached pages. 698 */ 699 if ((vp->v_flag & VNOCACHE) || 700 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 701 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 702 size_t bufsize; 703 int count; 704 u_offset_t org_offset; 705 stable_how stab_comm; 706 707 nfs3_fwrite: 708 if (rp->r_flags & RSTALE) { 709 resid = uiop->uio_resid; 710 offset = uiop->uio_loffset; 711 error = rp->r_error; 712 goto bottom; 713 } 714 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 715 base = kmem_alloc(bufsize, KM_SLEEP); 716 do { 717 if (ioflag & FDSYNC) 718 stab_comm = DATA_SYNC; 719 else 720 stab_comm = FILE_SYNC; 721 resid = uiop->uio_resid; 722 offset = uiop->uio_loffset; 723 count = MIN(uiop->uio_resid, bufsize); 724 org_offset = uiop->uio_loffset; 725 error = uiomove(base, count, UIO_WRITE, uiop); 726 if (!error) { 727 error = nfs3write(vp, base, org_offset, 728 count, cr, &stab_comm); 729 } 730 } while (!error && uiop->uio_resid > 0); 731 kmem_free(base, bufsize); 732 goto bottom; 733 } 734 735 736 bsize = vp->v_vfsp->vfs_bsize; 737 738 do { 739 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 740 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 741 n = MIN(MAXBSIZE - on, uiop->uio_resid); 742 743 resid = uiop->uio_resid; 744 offset = uiop->uio_loffset; 745 746 if (rp->r_flags & RSTALE) { 747 error = rp->r_error; 748 break; 749 } 750 751 /* 752 * Don't create dirty pages faster than they 753 * can be cleaned so that the system doesn't 754 * get imbalanced. If the async queue is 755 * maxed out, then wait for it to drain before 756 * creating more dirty pages. Also, wait for 757 * any threads doing pagewalks in the vop_getattr 758 * entry points so that they don't block for 759 * long periods. 760 */ 761 mutex_enter(&rp->r_statelock); 762 while ((mi->mi_max_threads != 0 && 763 rp->r_awcount > 2 * mi->mi_max_threads) || 764 rp->r_gcount > 0) 765 cv_wait(&rp->r_cv, &rp->r_statelock); 766 mutex_exit(&rp->r_statelock); 767 768 if (segmap_kpm) { 769 int pon = uiop->uio_loffset & PAGEOFFSET; 770 size_t pn = MIN(PAGESIZE - pon, uiop->uio_resid); 771 int pagecreate; 772 773 mutex_enter(&rp->r_statelock); 774 pagecreate = (pon == 0) && (pn == PAGESIZE || 775 uiop->uio_loffset + pn >= rp->r_size); 776 mutex_exit(&rp->r_statelock); 777 778 base = segmap_getmapflt(segkmap, vp, off + on, 779 pn, !pagecreate, S_WRITE); 780 781 error = writerp(rp, base + pon, n, uiop, pagecreate); 782 783 } else { 784 base = segmap_getmapflt(segkmap, vp, off + on, 785 n, 0, S_READ); 786 error = writerp(rp, base + on, n, uiop, 0); 787 } 788 789 if (!error) { 790 if (mi->mi_flags & MI_NOAC) 791 flags = SM_WRITE; 792 else if ((uiop->uio_loffset % bsize) == 0 || 793 IS_SWAPVP(vp)) { 794 /* 795 * Have written a whole block. 796 * Start an asynchronous write 797 * and mark the buffer to 798 * indicate that it won't be 799 * needed again soon. 800 */ 801 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 802 } else 803 flags = 0; 804 if ((ioflag & (FSYNC|FDSYNC)) || 805 (rp->r_flags & ROUTOFSPACE)) { 806 flags &= ~SM_ASYNC; 807 flags |= SM_WRITE; 808 } 809 error = segmap_release(segkmap, base, flags); 810 } else { 811 (void) segmap_release(segkmap, base, 0); 812 /* 813 * In the event that we got an access error while 814 * faulting in a page for a write-only file just 815 * force a write. 816 */ 817 if (error == EACCES) 818 goto nfs3_fwrite; 819 } 820 } while (!error && uiop->uio_resid > 0); 821 822 bottom: 823 if (error) { 824 uiop->uio_resid = resid + remainder; 825 uiop->uio_loffset = offset; 826 } else 827 uiop->uio_resid += remainder; 828 829 nfs_rw_exit(&rp->r_lkserlock); 830 831 return (error); 832 } 833 834 /* 835 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 836 */ 837 static int 838 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 839 int flags, cred_t *cr) 840 { 841 struct buf *bp; 842 int error; 843 page_t *savepp; 844 uchar_t fsdata; 845 stable_how stab_comm; 846 847 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 848 bp = pageio_setup(pp, len, vp, flags); 849 ASSERT(bp != NULL); 850 851 /* 852 * pageio_setup should have set b_addr to 0. This 853 * is correct since we want to do I/O on a page 854 * boundary. bp_mapin will use this addr to calculate 855 * an offset, and then set b_addr to the kernel virtual 856 * address it allocated for us. 857 */ 858 ASSERT(bp->b_un.b_addr == 0); 859 860 bp->b_edev = 0; 861 bp->b_dev = 0; 862 bp->b_lblkno = lbtodb(off); 863 bp->b_file = vp; 864 bp->b_offset = (offset_t)off; 865 bp_mapin(bp); 866 867 /* 868 * Calculate the desired level of stability to write data 869 * on the server and then mark all of the pages to reflect 870 * this. 871 */ 872 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 873 freemem > desfree) { 874 stab_comm = UNSTABLE; 875 fsdata = C_DELAYCOMMIT; 876 } else { 877 stab_comm = FILE_SYNC; 878 fsdata = C_NOCOMMIT; 879 } 880 881 savepp = pp; 882 do { 883 pp->p_fsdata = fsdata; 884 } while ((pp = pp->p_next) != savepp); 885 886 error = nfs3_bio(bp, &stab_comm, cr); 887 888 bp_mapout(bp); 889 pageio_done(bp); 890 891 /* 892 * If the server wrote pages in a more stable fashion than 893 * was requested, then clear all of the marks in the pages 894 * indicating that COMMIT operations were required. 895 */ 896 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) { 897 do { 898 pp->p_fsdata = C_NOCOMMIT; 899 } while ((pp = pp->p_next) != savepp); 900 } 901 902 return (error); 903 } 904 905 /* 906 * Write to file. Writes to remote server in largest size 907 * chunks that the server can handle. Write is synchronous. 908 */ 909 static int 910 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 911 stable_how *stab_comm) 912 { 913 mntinfo_t *mi; 914 WRITE3args args; 915 WRITE3res res; 916 int error; 917 int tsize; 918 rnode_t *rp; 919 int douprintf; 920 921 rp = VTOR(vp); 922 mi = VTOMI(vp); 923 924 ASSERT(nfs_zone() == mi->mi_zone); 925 926 args.file = *VTOFH3(vp); 927 args.stable = *stab_comm; 928 929 *stab_comm = FILE_SYNC; 930 931 douprintf = 1; 932 933 do { 934 if ((vp->v_flag & VNOCACHE) || 935 (rp->r_flags & RDIRECTIO) || 936 (mi->mi_flags & MI_DIRECTIO)) 937 tsize = MIN(mi->mi_stsize, count); 938 else 939 tsize = MIN(mi->mi_curwrite, count); 940 args.offset = (offset3)offset; 941 args.count = (count3)tsize; 942 args.data.data_len = (uint_t)tsize; 943 args.data.data_val = base; 944 945 if (mi->mi_io_kstats) { 946 mutex_enter(&mi->mi_lock); 947 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 948 mutex_exit(&mi->mi_lock); 949 } 950 args.mblk = NULL; 951 do { 952 error = rfs3call(mi, NFSPROC3_WRITE, 953 xdr_WRITE3args, (caddr_t)&args, 954 xdr_WRITE3res, (caddr_t)&res, cr, 955 &douprintf, &res.status, 0, NULL); 956 } while (error == ENFS_TRYAGAIN); 957 if (mi->mi_io_kstats) { 958 mutex_enter(&mi->mi_lock); 959 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 960 mutex_exit(&mi->mi_lock); 961 } 962 963 if (error) 964 return (error); 965 error = geterrno3(res.status); 966 if (!error) { 967 if (res.resok.count > args.count) { 968 zcmn_err(getzoneid(), CE_WARN, 969 "nfs3write: server %s wrote %u, " 970 "requested was %u", 971 rp->r_server->sv_hostname, 972 res.resok.count, args.count); 973 return (EIO); 974 } 975 if (res.resok.committed == UNSTABLE) { 976 *stab_comm = UNSTABLE; 977 if (args.stable == DATA_SYNC || 978 args.stable == FILE_SYNC) { 979 zcmn_err(getzoneid(), CE_WARN, 980 "nfs3write: server %s did not commit to stable storage", 981 rp->r_server->sv_hostname); 982 return (EIO); 983 } 984 } 985 tsize = (int)res.resok.count; 986 count -= tsize; 987 base += tsize; 988 offset += tsize; 989 if (mi->mi_io_kstats) { 990 mutex_enter(&mi->mi_lock); 991 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 992 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 993 tsize; 994 mutex_exit(&mi->mi_lock); 995 } 996 lwp_stat_update(LWP_STAT_OUBLK, 1); 997 mutex_enter(&rp->r_statelock); 998 if (rp->r_flags & RHAVEVERF) { 999 if (rp->r_verf != res.resok.verf) { 1000 nfs3_set_mod(vp); 1001 rp->r_verf = res.resok.verf; 1002 /* 1003 * If the data was written UNSTABLE, 1004 * then might as well stop because 1005 * the whole block will have to get 1006 * rewritten anyway. 1007 */ 1008 if (*stab_comm == UNSTABLE) { 1009 mutex_exit(&rp->r_statelock); 1010 break; 1011 } 1012 } 1013 } else { 1014 rp->r_verf = res.resok.verf; 1015 rp->r_flags |= RHAVEVERF; 1016 } 1017 /* 1018 * Mark the attribute cache as timed out and 1019 * set RWRITEATTR to indicate that the file 1020 * was modified with a WRITE operation and 1021 * that the attributes can not be trusted. 1022 */ 1023 PURGE_ATTRCACHE_LOCKED(rp); 1024 rp->r_flags |= RWRITEATTR; 1025 mutex_exit(&rp->r_statelock); 1026 } 1027 } while (!error && count); 1028 1029 return (error); 1030 } 1031 1032 /* 1033 * Read from a file. Reads data in largest chunks our interface can handle. 1034 */ 1035 static int 1036 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, 1037 size_t *residp, cred_t *cr) 1038 { 1039 mntinfo_t *mi; 1040 READ3args args; 1041 READ3vres res; 1042 int tsize; 1043 int error; 1044 int douprintf; 1045 failinfo_t fi; 1046 rnode_t *rp; 1047 struct vattr va; 1048 hrtime_t t; 1049 1050 rp = VTOR(vp); 1051 mi = VTOMI(vp); 1052 ASSERT(nfs_zone() == mi->mi_zone); 1053 douprintf = 1; 1054 1055 args.file = *VTOFH3(vp); 1056 fi.vp = vp; 1057 fi.fhp = (caddr_t)&args.file; 1058 fi.copyproc = nfs3copyfh; 1059 fi.lookupproc = nfs3lookup; 1060 fi.xattrdirproc = acl_getxattrdir3; 1061 1062 res.pov.fres.vp = vp; 1063 res.pov.fres.vap = &va; 1064 1065 res.wlist = NULL; 1066 1067 *residp = count; 1068 do { 1069 if (mi->mi_io_kstats) { 1070 mutex_enter(&mi->mi_lock); 1071 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1072 mutex_exit(&mi->mi_lock); 1073 } 1074 1075 do { 1076 if ((vp->v_flag & VNOCACHE) || 1077 (rp->r_flags & RDIRECTIO) || 1078 (mi->mi_flags & MI_DIRECTIO)) 1079 tsize = MIN(mi->mi_tsize, count); 1080 else 1081 tsize = MIN(mi->mi_curread, count); 1082 res.data.data_val = base; 1083 res.data.data_len = tsize; 1084 args.offset = (offset3)offset; 1085 args.count = (count3)tsize; 1086 t = gethrtime(); 1087 error = rfs3call(mi, NFSPROC3_READ, 1088 xdr_READ3args, (caddr_t)&args, 1089 xdr_READ3vres, (caddr_t)&res, cr, 1090 &douprintf, &res.status, 0, &fi); 1091 } while (error == ENFS_TRYAGAIN); 1092 1093 if (mi->mi_io_kstats) { 1094 mutex_enter(&mi->mi_lock); 1095 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1096 mutex_exit(&mi->mi_lock); 1097 } 1098 1099 if (error) 1100 return (error); 1101 1102 error = geterrno3(res.status); 1103 if (error) 1104 return (error); 1105 1106 if (res.count != res.data.data_len) { 1107 zcmn_err(getzoneid(), CE_WARN, 1108 "nfs3read: server %s returned incorrect amount", 1109 rp->r_server->sv_hostname); 1110 return (EIO); 1111 } 1112 1113 count -= res.count; 1114 *residp = count; 1115 base += res.count; 1116 offset += res.count; 1117 if (mi->mi_io_kstats) { 1118 mutex_enter(&mi->mi_lock); 1119 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1120 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 1121 mutex_exit(&mi->mi_lock); 1122 } 1123 lwp_stat_update(LWP_STAT_INBLK, 1); 1124 } while (count && !res.eof); 1125 1126 if (res.pov.attributes) { 1127 mutex_enter(&rp->r_statelock); 1128 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) { 1129 mutex_exit(&rp->r_statelock); 1130 PURGE_ATTRCACHE(vp); 1131 } else { 1132 if (rp->r_mtime <= t) 1133 nfs_attrcache_va(vp, &va); 1134 mutex_exit(&rp->r_statelock); 1135 } 1136 } 1137 1138 return (0); 1139 } 1140 1141 /* ARGSUSED */ 1142 static int 1143 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) 1144 { 1145 1146 if (nfs_zone() != VTOMI(vp)->mi_zone) 1147 return (EIO); 1148 switch (cmd) { 1149 case _FIODIRECTIO: 1150 return (nfs_directio(vp, (int)arg, cr)); 1151 default: 1152 return (ENOTTY); 1153 } 1154 } 1155 1156 static int 1157 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1158 { 1159 int error; 1160 rnode_t *rp; 1161 1162 if (nfs_zone() != VTOMI(vp)->mi_zone) 1163 return (EIO); 1164 /* 1165 * If it has been specified that the return value will 1166 * just be used as a hint, and we are only being asked 1167 * for size, fsid or rdevid, then return the client's 1168 * notion of these values without checking to make sure 1169 * that the attribute cache is up to date. 1170 * The whole point is to avoid an over the wire GETATTR 1171 * call. 1172 */ 1173 rp = VTOR(vp); 1174 if (flags & ATTR_HINT) { 1175 if (vap->va_mask == 1176 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1177 mutex_enter(&rp->r_statelock); 1178 if (vap->va_mask | AT_SIZE) 1179 vap->va_size = rp->r_size; 1180 if (vap->va_mask | AT_FSID) 1181 vap->va_fsid = rp->r_attr.va_fsid; 1182 if (vap->va_mask | AT_RDEV) 1183 vap->va_rdev = rp->r_attr.va_rdev; 1184 mutex_exit(&rp->r_statelock); 1185 return (0); 1186 } 1187 } 1188 1189 /* 1190 * Only need to flush pages if asking for the mtime 1191 * and if there any dirty pages or any outstanding 1192 * asynchronous (write) requests for this file. 1193 */ 1194 if (vap->va_mask & AT_MTIME) { 1195 if (vn_has_cached_data(vp) && 1196 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1197 mutex_enter(&rp->r_statelock); 1198 rp->r_gcount++; 1199 mutex_exit(&rp->r_statelock); 1200 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr); 1201 mutex_enter(&rp->r_statelock); 1202 if (error && (error == ENOSPC || error == EDQUOT)) { 1203 if (!rp->r_error) 1204 rp->r_error = error; 1205 } 1206 if (--rp->r_gcount == 0) 1207 cv_broadcast(&rp->r_cv); 1208 mutex_exit(&rp->r_statelock); 1209 } 1210 } 1211 1212 return (nfs3getattr(vp, vap, cr)); 1213 } 1214 1215 /*ARGSUSED4*/ 1216 static int 1217 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1218 caller_context_t *ct) 1219 { 1220 int error; 1221 struct vattr va; 1222 1223 if (vap->va_mask & AT_NOSET) 1224 return (EINVAL); 1225 if (nfs_zone() != VTOMI(vp)->mi_zone) 1226 return (EIO); 1227 1228 va.va_mask = AT_UID | AT_MODE; 1229 error = nfs3getattr(vp, &va, cr); 1230 if (error) 1231 return (error); 1232 1233 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx, 1234 vp); 1235 if (error) 1236 return (error); 1237 1238 return (nfs3setattr(vp, vap, flags, cr)); 1239 } 1240 1241 static int 1242 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1243 { 1244 int error; 1245 uint_t mask; 1246 SETATTR3args args; 1247 SETATTR3res res; 1248 int douprintf; 1249 rnode_t *rp; 1250 struct vattr va; 1251 mode_t omode; 1252 vsecattr_t *vsp; 1253 hrtime_t t; 1254 1255 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1256 mask = vap->va_mask; 1257 1258 rp = VTOR(vp); 1259 1260 /* 1261 * Only need to flush pages if there are any pages and 1262 * if the file is marked as dirty in some fashion. The 1263 * file must be flushed so that we can accurately 1264 * determine the size of the file and the cached data 1265 * after the SETATTR returns. A file is considered to 1266 * be dirty if it is either marked with RDIRTY, has 1267 * outstanding i/o's active, or is mmap'd. In this 1268 * last case, we can't tell whether there are dirty 1269 * pages, so we flush just to be sure. 1270 */ 1271 if (vn_has_cached_data(vp) && 1272 ((rp->r_flags & RDIRTY) || 1273 rp->r_count > 0 || 1274 rp->r_mapcnt > 0)) { 1275 ASSERT(vp->v_type != VCHR); 1276 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr); 1277 if (error && (error == ENOSPC || error == EDQUOT)) { 1278 mutex_enter(&rp->r_statelock); 1279 if (!rp->r_error) 1280 rp->r_error = error; 1281 mutex_exit(&rp->r_statelock); 1282 } 1283 } 1284 1285 args.object = *RTOFH3(rp); 1286 /* 1287 * If the intent is for the server to set the times, 1288 * there is no point in have the mask indicating set mtime or 1289 * atime, because the vap values may be junk, and so result 1290 * in an overflow error. Remove these flags from the vap mask 1291 * before calling in this case, and restore them afterwards. 1292 */ 1293 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) { 1294 /* Use server times, so don't set the args time fields */ 1295 vap->va_mask &= ~(AT_ATIME | AT_MTIME); 1296 error = vattr_to_sattr3(vap, &args.new_attributes); 1297 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME)); 1298 if (mask & AT_ATIME) { 1299 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 1300 } 1301 if (mask & AT_MTIME) { 1302 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 1303 } 1304 } else { 1305 /* Either do not set times or use the client specified times */ 1306 error = vattr_to_sattr3(vap, &args.new_attributes); 1307 } 1308 1309 if (error) { 1310 /* req time field(s) overflow - return immediately */ 1311 return (error); 1312 } 1313 1314 va.va_mask = AT_MODE | AT_CTIME; 1315 error = nfs3getattr(vp, &va, cr); 1316 if (error) 1317 return (error); 1318 omode = va.va_mode; 1319 1320 tryagain: 1321 if (mask & AT_SIZE) { 1322 args.guard.check = TRUE; 1323 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec; 1324 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec; 1325 } else 1326 args.guard.check = FALSE; 1327 1328 douprintf = 1; 1329 1330 t = gethrtime(); 1331 1332 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 1333 xdr_SETATTR3args, (caddr_t)&args, 1334 xdr_SETATTR3res, (caddr_t)&res, cr, 1335 &douprintf, &res.status, 0, NULL); 1336 1337 /* 1338 * Purge the access cache and ACL cache if changing either the 1339 * owner of the file, the group owner, or the mode. These may 1340 * change the access permissions of the file, so purge old 1341 * information and start over again. 1342 */ 1343 if (mask & (AT_UID | AT_GID | AT_MODE)) { 1344 (void) nfs_access_purge_rp(rp); 1345 if (rp->r_secattr != NULL) { 1346 mutex_enter(&rp->r_statelock); 1347 vsp = rp->r_secattr; 1348 rp->r_secattr = NULL; 1349 mutex_exit(&rp->r_statelock); 1350 if (vsp != NULL) 1351 nfs_acl_free(vsp); 1352 } 1353 } 1354 1355 if (error) { 1356 PURGE_ATTRCACHE(vp); 1357 return (error); 1358 } 1359 1360 error = geterrno3(res.status); 1361 if (!error) { 1362 /* 1363 * If changing the size of the file, invalidate 1364 * any local cached data which is no longer part 1365 * of the file. We also possibly invalidate the 1366 * last page in the file. We could use 1367 * pvn_vpzero(), but this would mark the page as 1368 * modified and require it to be written back to 1369 * the server for no particularly good reason. 1370 * This way, if we access it, then we bring it 1371 * back in. A read should be cheaper than a 1372 * write. 1373 */ 1374 if (mask & AT_SIZE) { 1375 nfs_invalidate_pages(vp, 1376 (vap->va_size & PAGEMASK), cr); 1377 } 1378 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 1379 /* 1380 * Some servers will change the mode to clear the setuid 1381 * and setgid bits when changing the uid or gid. The 1382 * client needs to compensate appropriately. 1383 */ 1384 if (mask & (AT_UID | AT_GID)) { 1385 int terror; 1386 1387 va.va_mask = AT_MODE; 1388 terror = nfs3getattr(vp, &va, cr); 1389 if (!terror && 1390 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 1391 (!(mask & AT_MODE) && va.va_mode != omode))) { 1392 va.va_mask = AT_MODE; 1393 if (mask & AT_MODE) 1394 va.va_mode = vap->va_mode; 1395 else 1396 va.va_mode = omode; 1397 (void) nfs3setattr(vp, &va, 0, cr); 1398 } 1399 } 1400 } else { 1401 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 1402 /* 1403 * If we got back a "not synchronized" error, then 1404 * we need to retry with a new guard value. The 1405 * guard value used is the change time. If the 1406 * server returned post_op_attr, then we can just 1407 * retry because we have the latest attributes. 1408 * Otherwise, we issue a GETATTR to get the latest 1409 * attributes and then retry. If we couldn't get 1410 * the attributes this way either, then we give 1411 * up because we can't complete the operation as 1412 * required. 1413 */ 1414 if (res.status == NFS3ERR_NOT_SYNC) { 1415 va.va_mask = AT_CTIME; 1416 if (nfs3getattr(vp, &va, cr) == 0) 1417 goto tryagain; 1418 } 1419 PURGE_STALE_FH(error, vp, cr); 1420 } 1421 1422 return (error); 1423 } 1424 1425 static int 1426 nfs3_accessx(void *vp, int mode, cred_t *cr) 1427 { 1428 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1429 return (nfs3_access(vp, mode, 0, cr)); 1430 } 1431 1432 /* ARGSUSED */ 1433 static int 1434 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr) 1435 { 1436 int error; 1437 ACCESS3args args; 1438 ACCESS3res res; 1439 int douprintf; 1440 uint32 acc; 1441 rnode_t *rp; 1442 cred_t *cred, *ncr, *ncrfree = NULL; 1443 failinfo_t fi; 1444 nfs_access_type_t cacc; 1445 hrtime_t t; 1446 1447 acc = 0; 1448 if (nfs_zone() != VTOMI(vp)->mi_zone) 1449 return (EIO); 1450 if (mode & VREAD) 1451 acc |= ACCESS3_READ; 1452 if (mode & VWRITE) { 1453 if (vn_is_readonly(vp) && !IS_DEVVP(vp)) 1454 return (EROFS); 1455 if (vp->v_type == VDIR) 1456 acc |= ACCESS3_DELETE; 1457 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND; 1458 } 1459 if (mode & VEXEC) { 1460 if (vp->v_type == VDIR) 1461 acc |= ACCESS3_LOOKUP; 1462 else 1463 acc |= ACCESS3_EXECUTE; 1464 } 1465 1466 rp = VTOR(vp); 1467 args.object = *VTOFH3(vp); 1468 if (vp->v_type == VDIR) { 1469 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY | 1470 ACCESS3_EXTEND | ACCESS3_LOOKUP; 1471 } else { 1472 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND | 1473 ACCESS3_EXECUTE; 1474 } 1475 fi.vp = vp; 1476 fi.fhp = (caddr_t)&args.object; 1477 fi.copyproc = nfs3copyfh; 1478 fi.lookupproc = nfs3lookup; 1479 fi.xattrdirproc = acl_getxattrdir3; 1480 1481 cred = cr; 1482 /* 1483 * ncr and ncrfree both initially 1484 * point to the memory area returned 1485 * by crnetadjust(); 1486 * ncrfree not NULL when exiting means 1487 * that we need to release it 1488 */ 1489 ncr = crnetadjust(cred); 1490 ncrfree = ncr; 1491 tryagain: 1492 if (rp->r_acache != NULL) { 1493 cacc = nfs_access_check(rp, acc, cred); 1494 if (cacc == NFS_ACCESS_ALLOWED) { 1495 if (ncrfree != NULL) 1496 crfree(ncrfree); 1497 return (0); 1498 } 1499 if (cacc == NFS_ACCESS_DENIED) { 1500 /* 1501 * If the cred can be adjusted, try again 1502 * with the new cred. 1503 */ 1504 if (ncr != NULL) { 1505 cred = ncr; 1506 ncr = NULL; 1507 goto tryagain; 1508 } 1509 if (ncrfree != NULL) 1510 crfree(ncrfree); 1511 return (EACCES); 1512 } 1513 } 1514 1515 douprintf = 1; 1516 1517 t = gethrtime(); 1518 1519 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS, 1520 xdr_ACCESS3args, (caddr_t)&args, 1521 xdr_ACCESS3res, (caddr_t)&res, cred, 1522 &douprintf, &res.status, 0, &fi); 1523 1524 if (error) { 1525 if (ncrfree != NULL) 1526 crfree(ncrfree); 1527 return (error); 1528 } 1529 1530 error = geterrno3(res.status); 1531 if (!error) { 1532 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 1533 nfs_access_cache(rp, args.access, res.resok.access, cred); 1534 /* 1535 * we just cached results with cred; if cred is the 1536 * adjusted credentials from crnetadjust, we do not want 1537 * to release them before exiting: hence setting ncrfree 1538 * to NULL 1539 */ 1540 if (cred != cr) 1541 ncrfree = NULL; 1542 if ((acc & res.resok.access) != acc) { 1543 /* 1544 * If the cred can be adjusted, try again 1545 * with the new cred. 1546 */ 1547 if (ncr != NULL) { 1548 cred = ncr; 1549 ncr = NULL; 1550 goto tryagain; 1551 } 1552 error = EACCES; 1553 } 1554 } else { 1555 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 1556 PURGE_STALE_FH(error, vp, cr); 1557 } 1558 1559 if (ncrfree != NULL) 1560 crfree(ncrfree); 1561 1562 return (error); 1563 } 1564 1565 static int nfs3_do_symlink_cache = 1; 1566 1567 static int 1568 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr) 1569 { 1570 int error; 1571 READLINK3args args; 1572 READLINK3res res; 1573 nfspath3 resdata_backup; 1574 rnode_t *rp; 1575 int douprintf; 1576 int len; 1577 failinfo_t fi; 1578 hrtime_t t; 1579 1580 /* 1581 * Can't readlink anything other than a symbolic link. 1582 */ 1583 if (vp->v_type != VLNK) 1584 return (EINVAL); 1585 if (nfs_zone() != VTOMI(vp)->mi_zone) 1586 return (EIO); 1587 1588 rp = VTOR(vp); 1589 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) { 1590 error = nfs3_validate_caches(vp, cr); 1591 if (error) 1592 return (error); 1593 mutex_enter(&rp->r_statelock); 1594 if (rp->r_symlink.contents != NULL) { 1595 error = uiomove(rp->r_symlink.contents, 1596 rp->r_symlink.len, UIO_READ, uiop); 1597 mutex_exit(&rp->r_statelock); 1598 return (error); 1599 } 1600 mutex_exit(&rp->r_statelock); 1601 } 1602 1603 args.symlink = *VTOFH3(vp); 1604 fi.vp = vp; 1605 fi.fhp = (caddr_t)&args.symlink; 1606 fi.copyproc = nfs3copyfh; 1607 fi.lookupproc = nfs3lookup; 1608 fi.xattrdirproc = acl_getxattrdir3; 1609 1610 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1611 1612 resdata_backup = res.resok.data; 1613 1614 douprintf = 1; 1615 1616 t = gethrtime(); 1617 1618 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK, 1619 xdr_nfs_fh3, (caddr_t)&args, 1620 xdr_READLINK3res, (caddr_t)&res, cr, 1621 &douprintf, &res.status, 0, &fi); 1622 1623 if (res.resok.data == nfs3nametoolong) 1624 error = EINVAL; 1625 1626 if (error) { 1627 kmem_free(resdata_backup, MAXPATHLEN); 1628 return (error); 1629 } 1630 1631 error = geterrno3(res.status); 1632 if (!error) { 1633 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t, 1634 cr); 1635 len = strlen(res.resok.data); 1636 error = uiomove(res.resok.data, len, UIO_READ, uiop); 1637 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) { 1638 mutex_enter(&rp->r_statelock); 1639 if (rp->r_symlink.contents == NULL) { 1640 rp->r_symlink.contents = res.resok.data; 1641 rp->r_symlink.len = len; 1642 rp->r_symlink.size = MAXPATHLEN; 1643 mutex_exit(&rp->r_statelock); 1644 } else { 1645 mutex_exit(&rp->r_statelock); 1646 1647 kmem_free((void *)res.resok.data, MAXPATHLEN); 1648 } 1649 } else { 1650 kmem_free((void *)res.resok.data, MAXPATHLEN); 1651 } 1652 } else { 1653 nfs3_cache_post_op_attr(vp, 1654 &res.resfail.symlink_attributes, t, cr); 1655 PURGE_STALE_FH(error, vp, cr); 1656 1657 kmem_free((void *)res.resok.data, MAXPATHLEN); 1658 1659 } 1660 1661 /* 1662 * The over the wire error for attempting to readlink something 1663 * other than a symbolic link is ENXIO. However, we need to 1664 * return EINVAL instead of ENXIO, so we map it here. 1665 */ 1666 return (error == ENXIO ? EINVAL : error); 1667 } 1668 1669 /* 1670 * Flush local dirty pages to stable storage on the server. 1671 * 1672 * If FNODSYNC is specified, then there is nothing to do because 1673 * metadata changes are not cached on the client before being 1674 * sent to the server. 1675 */ 1676 static int 1677 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1678 { 1679 int error; 1680 1681 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1682 return (0); 1683 if (nfs_zone() != VTOMI(vp)->mi_zone) 1684 return (EIO); 1685 1686 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 1687 if (!error) 1688 error = VTOR(vp)->r_error; 1689 return (error); 1690 } 1691 1692 /* 1693 * Weirdness: if the file was removed or the target of a rename 1694 * operation while it was open, it got renamed instead. Here we 1695 * remove the renamed file. 1696 */ 1697 static void 1698 nfs3_inactive(vnode_t *vp, cred_t *cr) 1699 { 1700 rnode_t *rp; 1701 1702 ASSERT(vp != DNLC_NO_VNODE); 1703 1704 /* 1705 * If this is coming from the wrong zone, we let someone in the right 1706 * zone take care of it asynchronously. We can get here due to 1707 * VN_RELE() being called from pageout() or fsflush(). This call may 1708 * potentially turn into an expensive no-op if, for instance, v_count 1709 * gets incremented in the meantime, but it's still correct. 1710 */ 1711 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1712 nfs_async_inactive(vp, cr, nfs3_inactive); 1713 return; 1714 } 1715 1716 rp = VTOR(vp); 1717 redo: 1718 if (rp->r_unldvp != NULL) { 1719 /* 1720 * Save the vnode pointer for the directory where the 1721 * unlinked-open file got renamed, then set it to NULL 1722 * to prevent another thread from getting here before 1723 * we're done with the remove. While we have the 1724 * statelock, make local copies of the pertinent rnode 1725 * fields. If we weren't to do this in an atomic way, the 1726 * the unl* fields could become inconsistent with respect 1727 * to each other due to a race condition between this 1728 * code and nfs_remove(). See bug report 1034328. 1729 */ 1730 mutex_enter(&rp->r_statelock); 1731 if (rp->r_unldvp != NULL) { 1732 vnode_t *unldvp; 1733 char *unlname; 1734 cred_t *unlcred; 1735 REMOVE3args args; 1736 REMOVE3res res; 1737 int douprintf; 1738 int error; 1739 hrtime_t t; 1740 1741 unldvp = rp->r_unldvp; 1742 rp->r_unldvp = NULL; 1743 unlname = rp->r_unlname; 1744 rp->r_unlname = NULL; 1745 unlcred = rp->r_unlcred; 1746 rp->r_unlcred = NULL; 1747 mutex_exit(&rp->r_statelock); 1748 1749 /* 1750 * If there are any dirty pages left, then flush 1751 * them. This is unfortunate because they just 1752 * may get thrown away during the remove operation, 1753 * but we have to do this for correctness. 1754 */ 1755 if (vn_has_cached_data(vp) && 1756 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1757 ASSERT(vp->v_type != VCHR); 1758 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr); 1759 if (error) { 1760 mutex_enter(&rp->r_statelock); 1761 if (!rp->r_error) 1762 rp->r_error = error; 1763 mutex_exit(&rp->r_statelock); 1764 } 1765 } 1766 1767 /* 1768 * Do the remove operation on the renamed file 1769 */ 1770 setdiropargs3(&args.object, unlname, unldvp); 1771 1772 douprintf = 1; 1773 1774 t = gethrtime(); 1775 1776 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE, 1777 xdr_diropargs3, (caddr_t)&args, 1778 xdr_REMOVE3res, (caddr_t)&res, unlcred, 1779 &douprintf, &res.status, 0, NULL); 1780 1781 if (error) { 1782 PURGE_ATTRCACHE(unldvp); 1783 } else { 1784 error = geterrno3(res.status); 1785 if (!error) { 1786 nfs3_cache_wcc_data(unldvp, 1787 &res.resok.dir_wcc, t, cr); 1788 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1789 nfs_purge_rddir_cache(unldvp); 1790 } else { 1791 nfs3_cache_wcc_data(unldvp, 1792 &res.resfail.dir_wcc, t, cr); 1793 PURGE_STALE_FH(error, unldvp, cr); 1794 } 1795 } 1796 1797 /* 1798 * Release stuff held for the remove 1799 */ 1800 VN_RELE(unldvp); 1801 kmem_free(unlname, MAXNAMELEN); 1802 crfree(unlcred); 1803 goto redo; 1804 } 1805 mutex_exit(&rp->r_statelock); 1806 } 1807 1808 rp_addfree(rp, cr); 1809 } 1810 1811 /* 1812 * Remote file system operations having to do with directory manipulation. 1813 */ 1814 1815 static int 1816 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1817 int flags, vnode_t *rdir, cred_t *cr) 1818 { 1819 int error; 1820 vnode_t *vp; 1821 vnode_t *avp = NULL; 1822 rnode_t *drp; 1823 1824 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1825 return (EPERM); 1826 1827 drp = VTOR(dvp); 1828 1829 /* 1830 * Are we looking up extended attributes? If so, "dvp" is 1831 * the file or directory for which we want attributes, and 1832 * we need a lookup of the hidden attribute directory 1833 * before we lookup the rest of the path. 1834 */ 1835 if (flags & LOOKUP_XATTR) { 1836 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1837 mntinfo_t *mi; 1838 1839 mi = VTOMI(dvp); 1840 if (!(mi->mi_flags & MI_EXTATTR)) 1841 return (EINVAL); 1842 1843 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1844 return (EINTR); 1845 1846 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1847 if (avp == NULL) 1848 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0); 1849 else 1850 error = 0; 1851 1852 nfs_rw_exit(&drp->r_rwlock); 1853 1854 if (error) { 1855 if (mi->mi_flags & MI_EXTATTR) 1856 return (error); 1857 return (EINVAL); 1858 } 1859 dvp = avp; 1860 drp = VTOR(dvp); 1861 } 1862 1863 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1864 error = EINTR; 1865 goto out; 1866 } 1867 1868 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1869 1870 nfs_rw_exit(&drp->r_rwlock); 1871 1872 /* 1873 * If vnode is a device, create special vnode. 1874 */ 1875 if (!error && IS_DEVVP(*vpp)) { 1876 vp = *vpp; 1877 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1878 VN_RELE(vp); 1879 } 1880 1881 out: 1882 if (avp != NULL) 1883 VN_RELE(avp); 1884 1885 return (error); 1886 } 1887 1888 static int nfs3_lookup_neg_cache = 1; 1889 1890 #ifdef DEBUG 1891 static int nfs3_lookup_dnlc_hits = 0; 1892 static int nfs3_lookup_dnlc_misses = 0; 1893 static int nfs3_lookup_dnlc_neg_hits = 0; 1894 static int nfs3_lookup_dnlc_disappears = 0; 1895 static int nfs3_lookup_dnlc_lookups = 0; 1896 #endif 1897 1898 /* ARGSUSED */ 1899 int 1900 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1901 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1902 { 1903 int error; 1904 rnode_t *drp; 1905 1906 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1907 /* 1908 * If lookup is for "", just return dvp. Don't need 1909 * to send it over the wire, look it up in the dnlc, 1910 * or perform any access checks. 1911 */ 1912 if (*nm == '\0') { 1913 VN_HOLD(dvp); 1914 *vpp = dvp; 1915 return (0); 1916 } 1917 1918 /* 1919 * Can't do lookups in non-directories. 1920 */ 1921 if (dvp->v_type != VDIR) 1922 return (ENOTDIR); 1923 1924 /* 1925 * If we're called with RFSCALL_SOFT, it's important that 1926 * the only rfscall is one we make directly; if we permit 1927 * an access call because we're looking up "." or validating 1928 * a dnlc hit, we'll deadlock because that rfscall will not 1929 * have the RFSCALL_SOFT set. 1930 */ 1931 if (rfscall_flags & RFSCALL_SOFT) 1932 goto callit; 1933 1934 /* 1935 * If lookup is for ".", just return dvp. Don't need 1936 * to send it over the wire or look it up in the dnlc, 1937 * just need to check access. 1938 */ 1939 if (strcmp(nm, ".") == 0) { 1940 error = nfs3_access(dvp, VEXEC, 0, cr); 1941 if (error) 1942 return (error); 1943 VN_HOLD(dvp); 1944 *vpp = dvp; 1945 return (0); 1946 } 1947 1948 drp = VTOR(dvp); 1949 if (!(drp->r_flags & RLOOKUP)) { 1950 mutex_enter(&drp->r_statelock); 1951 drp->r_flags |= RLOOKUP; 1952 mutex_exit(&drp->r_statelock); 1953 } 1954 1955 /* 1956 * Lookup this name in the DNLC. If there was a valid entry, 1957 * then return the results of the lookup. 1958 */ 1959 error = nfs3lookup_dnlc(dvp, nm, vpp, cr); 1960 if (error || *vpp != NULL) 1961 return (error); 1962 1963 callit: 1964 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags); 1965 1966 return (error); 1967 } 1968 1969 static int 1970 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 1971 { 1972 int error; 1973 vnode_t *vp; 1974 1975 ASSERT(*nm != '\0'); 1976 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1977 /* 1978 * Lookup this name in the DNLC. If successful, then validate 1979 * the caches and then recheck the DNLC. The DNLC is rechecked 1980 * just in case this entry got invalidated during the call 1981 * to nfs3_validate_caches. 1982 * 1983 * An assumption is being made that it is safe to say that a 1984 * file exists which may not on the server. Any operations to 1985 * the server will fail with ESTALE. 1986 */ 1987 #ifdef DEBUG 1988 nfs3_lookup_dnlc_lookups++; 1989 #endif 1990 vp = dnlc_lookup(dvp, nm); 1991 if (vp != NULL) { 1992 VN_RELE(vp); 1993 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 1994 PURGE_ATTRCACHE(dvp); 1995 } 1996 error = nfs3_validate_caches(dvp, cr); 1997 if (error) 1998 return (error); 1999 vp = dnlc_lookup(dvp, nm); 2000 if (vp != NULL) { 2001 error = nfs3_access(dvp, VEXEC, 0, cr); 2002 if (error) { 2003 VN_RELE(vp); 2004 return (error); 2005 } 2006 if (vp == DNLC_NO_VNODE) { 2007 VN_RELE(vp); 2008 #ifdef DEBUG 2009 nfs3_lookup_dnlc_neg_hits++; 2010 #endif 2011 return (ENOENT); 2012 } 2013 *vpp = vp; 2014 #ifdef DEBUG 2015 nfs3_lookup_dnlc_hits++; 2016 #endif 2017 return (0); 2018 } 2019 #ifdef DEBUG 2020 nfs3_lookup_dnlc_disappears++; 2021 #endif 2022 } 2023 #ifdef DEBUG 2024 else 2025 nfs3_lookup_dnlc_misses++; 2026 #endif 2027 2028 *vpp = NULL; 2029 2030 return (0); 2031 } 2032 2033 static int 2034 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 2035 int rfscall_flags) 2036 { 2037 int error; 2038 LOOKUP3args args; 2039 LOOKUP3vres res; 2040 int douprintf; 2041 struct vattr vattr; 2042 struct vattr dvattr; 2043 vnode_t *vp; 2044 failinfo_t fi; 2045 hrtime_t t; 2046 2047 ASSERT(*nm != '\0'); 2048 ASSERT(dvp->v_type == VDIR); 2049 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2050 2051 setdiropargs3(&args.what, nm, dvp); 2052 2053 fi.vp = dvp; 2054 fi.fhp = (caddr_t)&args.what.dir; 2055 fi.copyproc = nfs3copyfh; 2056 fi.lookupproc = nfs3lookup; 2057 fi.xattrdirproc = acl_getxattrdir3; 2058 res.obj_attributes.fres.vp = dvp; 2059 res.obj_attributes.fres.vap = &vattr; 2060 res.dir_attributes.fres.vp = dvp; 2061 res.dir_attributes.fres.vap = &dvattr; 2062 2063 douprintf = 1; 2064 2065 t = gethrtime(); 2066 2067 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP, 2068 xdr_diropargs3, (caddr_t)&args, 2069 xdr_LOOKUP3vres, (caddr_t)&res, cr, 2070 &douprintf, &res.status, rfscall_flags, &fi); 2071 2072 if (error) 2073 return (error); 2074 2075 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr); 2076 2077 error = geterrno3(res.status); 2078 if (error) { 2079 PURGE_STALE_FH(error, dvp, cr); 2080 if (error == ENOENT && nfs3_lookup_neg_cache) 2081 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 2082 return (error); 2083 } 2084 2085 if (res.obj_attributes.attributes) { 2086 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap, 2087 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2088 } else { 2089 vp = makenfs3node_va(&res.object, NULL, 2090 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2091 if (vp->v_type == VNON) { 2092 vattr.va_mask = AT_TYPE; 2093 error = nfs3getattr(vp, &vattr, cr); 2094 if (error) { 2095 VN_RELE(vp); 2096 return (error); 2097 } 2098 vp->v_type = vattr.va_type; 2099 } 2100 } 2101 2102 if (!(rfscall_flags & RFSCALL_SOFT)) 2103 dnlc_update(dvp, nm, vp); 2104 2105 *vpp = vp; 2106 2107 return (error); 2108 } 2109 2110 #ifdef DEBUG 2111 static int nfs3_create_misses = 0; 2112 #endif 2113 2114 /* ARGSUSED */ 2115 static int 2116 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2117 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 2118 { 2119 int error; 2120 vnode_t *vp; 2121 rnode_t *rp; 2122 struct vattr vattr; 2123 rnode_t *drp; 2124 vnode_t *tempvp; 2125 2126 drp = VTOR(dvp); 2127 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2128 return (EPERM); 2129 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2130 return (EINTR); 2131 2132 top: 2133 /* 2134 * We make a copy of the attributes because the caller does not 2135 * expect us to change what va points to. 2136 */ 2137 vattr = *va; 2138 2139 /* 2140 * If the pathname is "", just use dvp. Don't need 2141 * to send it over the wire, look it up in the dnlc, 2142 * or perform any access checks. 2143 */ 2144 if (*nm == '\0') { 2145 error = 0; 2146 VN_HOLD(dvp); 2147 vp = dvp; 2148 /* 2149 * If the pathname is ".", just use dvp. Don't need 2150 * to send it over the wire or look it up in the dnlc, 2151 * just need to check access. 2152 */ 2153 } else if (strcmp(nm, ".") == 0) { 2154 error = nfs3_access(dvp, VEXEC, 0, cr); 2155 if (error) { 2156 nfs_rw_exit(&drp->r_rwlock); 2157 return (error); 2158 } 2159 VN_HOLD(dvp); 2160 vp = dvp; 2161 /* 2162 * We need to go over the wire, just to be sure whether the 2163 * file exists or not. Using the DNLC can be dangerous in 2164 * this case when making a decision regarding existence. 2165 */ 2166 } else { 2167 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0); 2168 } 2169 if (!error) { 2170 if (exclusive == EXCL) 2171 error = EEXIST; 2172 else if (vp->v_type == VDIR && (mode & VWRITE)) 2173 error = EISDIR; 2174 else { 2175 /* 2176 * If vnode is a device, create special vnode. 2177 */ 2178 if (IS_DEVVP(vp)) { 2179 tempvp = vp; 2180 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2181 VN_RELE(tempvp); 2182 } 2183 if (!(error = VOP_ACCESS(vp, mode, 0, cr))) { 2184 if ((vattr.va_mask & AT_SIZE) && 2185 vp->v_type == VREG) { 2186 rp = VTOR(vp); 2187 /* 2188 * Check here for large file handled 2189 * by LF-unaware process (as 2190 * ufs_create() does) 2191 */ 2192 if (!(lfaware & FOFFMAX)) { 2193 mutex_enter(&rp->r_statelock); 2194 if (rp->r_size > MAXOFF32_T) 2195 error = EOVERFLOW; 2196 mutex_exit(&rp->r_statelock); 2197 } 2198 if (!error) { 2199 vattr.va_mask = AT_SIZE; 2200 error = nfs3setattr(vp, 2201 &vattr, 0, cr); 2202 } 2203 } 2204 } 2205 } 2206 nfs_rw_exit(&drp->r_rwlock); 2207 if (error) { 2208 VN_RELE(vp); 2209 } else 2210 *vpp = vp; 2211 return (error); 2212 } 2213 2214 dnlc_remove(dvp, nm); 2215 2216 /* 2217 * Decide what the group-id of the created file should be. 2218 * Set it in attribute list as advisory... 2219 */ 2220 error = setdirgid(dvp, &vattr.va_gid, cr); 2221 if (error) { 2222 nfs_rw_exit(&drp->r_rwlock); 2223 return (error); 2224 } 2225 vattr.va_mask |= AT_GID; 2226 2227 ASSERT(vattr.va_mask & AT_TYPE); 2228 if (vattr.va_type == VREG) { 2229 ASSERT(vattr.va_mask & AT_MODE); 2230 if (MANDMODE(vattr.va_mode)) { 2231 nfs_rw_exit(&drp->r_rwlock); 2232 return (EACCES); 2233 } 2234 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr, 2235 lfaware); 2236 /* 2237 * If this is not an exclusive create, then the CREATE 2238 * request will be made with the GUARDED mode set. This 2239 * means that the server will return EEXIST if the file 2240 * exists. The file could exist because of a retransmitted 2241 * request. In this case, we recover by starting over and 2242 * checking to see whether the file exists. This second 2243 * time through it should and a CREATE request will not be 2244 * sent. 2245 * 2246 * This handles the problem of a dangling CREATE request 2247 * which contains attributes which indicate that the file 2248 * should be truncated. This retransmitted request could 2249 * possibly truncate valid data in the file if not caught 2250 * by the duplicate request mechanism on the server or if 2251 * not caught by other means. The scenario is: 2252 * 2253 * Client transmits CREATE request with size = 0 2254 * Client times out, retransmits request. 2255 * Response to the first request arrives from the server 2256 * and the client proceeds on. 2257 * Client writes data to the file. 2258 * The server now processes retransmitted CREATE request 2259 * and truncates file. 2260 * 2261 * The use of the GUARDED CREATE request prevents this from 2262 * happening because the retransmitted CREATE would fail 2263 * with EEXIST and would not truncate the file. 2264 */ 2265 if (error == EEXIST && exclusive == NONEXCL) { 2266 #ifdef DEBUG 2267 nfs3_create_misses++; 2268 #endif 2269 goto top; 2270 } 2271 nfs_rw_exit(&drp->r_rwlock); 2272 return (error); 2273 } 2274 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 2275 nfs_rw_exit(&drp->r_rwlock); 2276 return (error); 2277 } 2278 2279 /* ARGSUSED */ 2280 static int 2281 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2282 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 2283 { 2284 int error; 2285 CREATE3args args; 2286 CREATE3res res; 2287 int douprintf; 2288 vnode_t *vp; 2289 struct vattr vattr; 2290 nfstime3 *verfp; 2291 rnode_t *rp; 2292 timestruc_t now; 2293 hrtime_t t; 2294 2295 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2296 setdiropargs3(&args.where, nm, dvp); 2297 if (exclusive == EXCL) { 2298 args.how.mode = EXCLUSIVE; 2299 /* 2300 * Construct the create verifier. This verifier needs 2301 * to be unique between different clients. It also needs 2302 * to vary for each exclusive create request generated 2303 * from the client to the server. 2304 * 2305 * The first attempt is made to use the hostid and a 2306 * unique number on the client. If the hostid has not 2307 * been set, the high resolution time that the exclusive 2308 * create request is being made is used. This will work 2309 * unless two different clients, both with the hostid 2310 * not set, attempt an exclusive create request on the 2311 * same file, at exactly the same clock time. The 2312 * chances of this happening seem small enough to be 2313 * reasonable. 2314 */ 2315 verfp = (nfstime3 *)&args.how.createhow3_u.verf; 2316 verfp->seconds = nfs_atoi(hw_serial); 2317 if (verfp->seconds != 0) 2318 verfp->nseconds = newnum(); 2319 else { 2320 gethrestime(&now); 2321 verfp->seconds = now.tv_sec; 2322 verfp->nseconds = now.tv_nsec; 2323 } 2324 /* 2325 * Since the server will use this value for the mtime, 2326 * make sure that it can't overflow. Zero out the MSB. 2327 * The actual value does not matter here, only its uniqeness. 2328 */ 2329 verfp->seconds %= INT32_MAX; 2330 } else { 2331 /* 2332 * Issue the non-exclusive create in guarded mode. This 2333 * may result in some false EEXIST responses for 2334 * retransmitted requests, but these will be handled at 2335 * a higher level. By using GUARDED, duplicate requests 2336 * to do file truncation and possible access problems 2337 * can be avoided. 2338 */ 2339 args.how.mode = GUARDED; 2340 error = vattr_to_sattr3(va, 2341 &args.how.createhow3_u.obj_attributes); 2342 if (error) { 2343 /* req time field(s) overflow - return immediately */ 2344 return (error); 2345 } 2346 } 2347 2348 douprintf = 1; 2349 2350 t = gethrtime(); 2351 2352 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE, 2353 xdr_CREATE3args, (caddr_t)&args, 2354 xdr_CREATE3res, (caddr_t)&res, cr, 2355 &douprintf, &res.status, 0, NULL); 2356 2357 if (error) { 2358 PURGE_ATTRCACHE(dvp); 2359 return (error); 2360 } 2361 2362 error = geterrno3(res.status); 2363 if (!error) { 2364 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2365 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2366 nfs_purge_rddir_cache(dvp); 2367 2368 /* 2369 * On exclusive create the times need to be explicitly 2370 * set to clear any potential verifier that may be stored 2371 * in one of these fields (see comment below). This 2372 * is done here to cover the case where no post op attrs 2373 * were returned or a 'invalid' time was returned in 2374 * the attributes. 2375 */ 2376 if (exclusive == EXCL) 2377 va->va_mask |= (AT_MTIME | AT_ATIME); 2378 2379 if (!res.resok.obj.handle_follows) { 2380 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2381 if (error) 2382 return (error); 2383 } else { 2384 if (res.resok.obj_attributes.attributes) { 2385 vp = makenfs3node(&res.resok.obj.handle, 2386 &res.resok.obj_attributes.attr, 2387 dvp->v_vfsp, t, cr, NULL, NULL); 2388 } else { 2389 vp = makenfs3node(&res.resok.obj.handle, NULL, 2390 dvp->v_vfsp, t, cr, NULL, NULL); 2391 2392 /* 2393 * On an exclusive create, it is possible 2394 * that attributes were returned but those 2395 * postop attributes failed to decode 2396 * properly. If this is the case, 2397 * then most likely the atime or mtime 2398 * were invalid for our client; this 2399 * is caused by the server storing the 2400 * create verifier in one of the time 2401 * fields(most likely mtime). 2402 * So... we are going to setattr just the 2403 * atime/mtime to clear things up. 2404 */ 2405 if (exclusive == EXCL) { 2406 if (error = 2407 nfs3excl_create_settimes(vp, 2408 va, cr)) { 2409 /* 2410 * Setting the times failed. 2411 * Remove the file and return 2412 * the error. 2413 */ 2414 VN_RELE(vp); 2415 (void) nfs3_remove(dvp, 2416 nm, cr); 2417 return (error); 2418 } 2419 } 2420 2421 /* 2422 * This handles the non-exclusive case 2423 * and the exclusive case where no post op 2424 * attrs were returned. 2425 */ 2426 if (vp->v_type == VNON) { 2427 vattr.va_mask = AT_TYPE; 2428 error = nfs3getattr(vp, &vattr, cr); 2429 if (error) { 2430 VN_RELE(vp); 2431 return (error); 2432 } 2433 vp->v_type = vattr.va_type; 2434 } 2435 } 2436 dnlc_update(dvp, nm, vp); 2437 } 2438 2439 rp = VTOR(vp); 2440 2441 /* 2442 * Check here for large file handled by 2443 * LF-unaware process (as ufs_create() does) 2444 */ 2445 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG && 2446 !(lfaware & FOFFMAX)) { 2447 mutex_enter(&rp->r_statelock); 2448 if (rp->r_size > MAXOFF32_T) { 2449 mutex_exit(&rp->r_statelock); 2450 VN_RELE(vp); 2451 return (EOVERFLOW); 2452 } 2453 mutex_exit(&rp->r_statelock); 2454 } 2455 2456 if (exclusive == EXCL && 2457 (va->va_mask & ~(AT_GID | AT_SIZE))) { 2458 /* 2459 * If doing an exclusive create, then generate 2460 * a SETATTR to set the initial attributes. 2461 * Try to set the mtime and the atime to the 2462 * server's current time. It is somewhat 2463 * expected that these fields will be used to 2464 * store the exclusive create cookie. If not, 2465 * server implementors will need to know that 2466 * a SETATTR will follow an exclusive create 2467 * and the cookie should be destroyed if 2468 * appropriate. This work may have been done 2469 * earlier in this function if post op attrs 2470 * were not available. 2471 * 2472 * The AT_GID and AT_SIZE bits are turned off 2473 * so that the SETATTR request will not attempt 2474 * to process these. The gid will be set 2475 * separately if appropriate. The size is turned 2476 * off because it is assumed that a new file will 2477 * be created empty and if the file wasn't empty, 2478 * then the exclusive create will have failed 2479 * because the file must have existed already. 2480 * Therefore, no truncate operation is needed. 2481 */ 2482 va->va_mask &= ~(AT_GID | AT_SIZE); 2483 error = nfs3setattr(vp, va, 0, cr); 2484 if (error) { 2485 /* 2486 * Couldn't correct the attributes of 2487 * the newly created file and the 2488 * attributes are wrong. Remove the 2489 * file and return an error to the 2490 * application. 2491 */ 2492 VN_RELE(vp); 2493 (void) nfs3_remove(dvp, nm, cr); 2494 return (error); 2495 } 2496 } 2497 2498 if (va->va_gid != rp->r_attr.va_gid) { 2499 /* 2500 * If the gid on the file isn't right, then 2501 * generate a SETATTR to attempt to change 2502 * it. This may or may not work, depending 2503 * upon the server's semantics for allowing 2504 * file ownership changes. 2505 */ 2506 va->va_mask = AT_GID; 2507 (void) nfs3setattr(vp, va, 0, cr); 2508 } 2509 2510 /* 2511 * If vnode is a device create special vnode 2512 */ 2513 if (IS_DEVVP(vp)) { 2514 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2515 VN_RELE(vp); 2516 } else 2517 *vpp = vp; 2518 } else { 2519 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2520 PURGE_STALE_FH(error, dvp, cr); 2521 } 2522 2523 return (error); 2524 } 2525 2526 /* 2527 * Special setattr function to take care of rest of atime/mtime 2528 * after successful exclusive create. This function exists to avoid 2529 * handling attributes from the server; exclusive the atime/mtime fields 2530 * may be 'invalid' in client's view and therefore can not be trusted. 2531 */ 2532 static int 2533 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr) 2534 { 2535 int error; 2536 uint_t mask; 2537 SETATTR3args args; 2538 SETATTR3res res; 2539 int douprintf; 2540 rnode_t *rp; 2541 hrtime_t t; 2542 2543 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 2544 /* save the caller's mask so that it can be reset later */ 2545 mask = vap->va_mask; 2546 2547 rp = VTOR(vp); 2548 2549 args.object = *RTOFH3(rp); 2550 args.guard.check = FALSE; 2551 2552 /* Use the mask to initialize the arguments */ 2553 vap->va_mask = 0; 2554 error = vattr_to_sattr3(vap, &args.new_attributes); 2555 2556 /* We want to set just atime/mtime on this request */ 2557 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 2558 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 2559 2560 douprintf = 1; 2561 2562 t = gethrtime(); 2563 2564 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 2565 xdr_SETATTR3args, (caddr_t)&args, 2566 xdr_SETATTR3res, (caddr_t)&res, cr, 2567 &douprintf, &res.status, 0, NULL); 2568 2569 if (error) { 2570 vap->va_mask = mask; 2571 return (error); 2572 } 2573 2574 error = geterrno3(res.status); 2575 if (!error) { 2576 /* 2577 * It is important to pick up the attributes. 2578 * Since this is the exclusive create path, the 2579 * attributes on the initial create were ignored 2580 * and we need these to have the correct info. 2581 */ 2582 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 2583 /* 2584 * No need to do the atime/mtime work again so clear 2585 * the bits. 2586 */ 2587 mask &= ~(AT_ATIME | AT_MTIME); 2588 } else { 2589 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 2590 } 2591 2592 vap->va_mask = mask; 2593 2594 return (error); 2595 } 2596 2597 /* ARGSUSED */ 2598 static int 2599 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2600 int mode, vnode_t **vpp, cred_t *cr) 2601 { 2602 int error; 2603 MKNOD3args args; 2604 MKNOD3res res; 2605 int douprintf; 2606 vnode_t *vp; 2607 struct vattr vattr; 2608 hrtime_t t; 2609 2610 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2611 switch (va->va_type) { 2612 case VCHR: 2613 case VBLK: 2614 setdiropargs3(&args.where, nm, dvp); 2615 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK; 2616 error = vattr_to_sattr3(va, 2617 &args.what.mknoddata3_u.device.dev_attributes); 2618 if (error) { 2619 /* req time field(s) overflow - return immediately */ 2620 return (error); 2621 } 2622 args.what.mknoddata3_u.device.spec.specdata1 = 2623 getmajor(va->va_rdev); 2624 args.what.mknoddata3_u.device.spec.specdata2 = 2625 getminor(va->va_rdev); 2626 break; 2627 2628 case VFIFO: 2629 case VSOCK: 2630 setdiropargs3(&args.where, nm, dvp); 2631 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK; 2632 error = vattr_to_sattr3(va, 2633 &args.what.mknoddata3_u.pipe_attributes); 2634 if (error) { 2635 /* req time field(s) overflow - return immediately */ 2636 return (error); 2637 } 2638 break; 2639 2640 default: 2641 return (EINVAL); 2642 } 2643 2644 douprintf = 1; 2645 2646 t = gethrtime(); 2647 2648 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD, 2649 xdr_MKNOD3args, (caddr_t)&args, 2650 xdr_MKNOD3res, (caddr_t)&res, cr, 2651 &douprintf, &res.status, 0, NULL); 2652 2653 if (error) { 2654 PURGE_ATTRCACHE(dvp); 2655 return (error); 2656 } 2657 2658 error = geterrno3(res.status); 2659 if (!error) { 2660 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2661 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2662 nfs_purge_rddir_cache(dvp); 2663 2664 if (!res.resok.obj.handle_follows) { 2665 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2666 if (error) 2667 return (error); 2668 } else { 2669 if (res.resok.obj_attributes.attributes) { 2670 vp = makenfs3node(&res.resok.obj.handle, 2671 &res.resok.obj_attributes.attr, 2672 dvp->v_vfsp, t, cr, NULL, NULL); 2673 } else { 2674 vp = makenfs3node(&res.resok.obj.handle, NULL, 2675 dvp->v_vfsp, t, cr, NULL, NULL); 2676 if (vp->v_type == VNON) { 2677 vattr.va_mask = AT_TYPE; 2678 error = nfs3getattr(vp, &vattr, cr); 2679 if (error) { 2680 VN_RELE(vp); 2681 return (error); 2682 } 2683 vp->v_type = vattr.va_type; 2684 } 2685 2686 } 2687 dnlc_update(dvp, nm, vp); 2688 } 2689 2690 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 2691 va->va_mask = AT_GID; 2692 (void) nfs3setattr(vp, va, 0, cr); 2693 } 2694 2695 /* 2696 * If vnode is a device create special vnode 2697 */ 2698 if (IS_DEVVP(vp)) { 2699 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2700 VN_RELE(vp); 2701 } else 2702 *vpp = vp; 2703 } else { 2704 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2705 PURGE_STALE_FH(error, dvp, cr); 2706 } 2707 return (error); 2708 } 2709 2710 /* 2711 * Weirdness: if the vnode to be removed is open 2712 * we rename it instead of removing it and nfs_inactive 2713 * will remove the new name. 2714 */ 2715 static int 2716 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr) 2717 { 2718 int error; 2719 REMOVE3args args; 2720 REMOVE3res res; 2721 vnode_t *vp; 2722 char *tmpname; 2723 int douprintf; 2724 rnode_t *rp; 2725 rnode_t *drp; 2726 hrtime_t t; 2727 2728 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2729 return (EPERM); 2730 drp = VTOR(dvp); 2731 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2732 return (EINTR); 2733 2734 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2735 if (error) { 2736 nfs_rw_exit(&drp->r_rwlock); 2737 return (error); 2738 } 2739 2740 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2741 VN_RELE(vp); 2742 nfs_rw_exit(&drp->r_rwlock); 2743 return (EPERM); 2744 } 2745 2746 /* 2747 * First just remove the entry from the name cache, as it 2748 * is most likely the only entry for this vp. 2749 */ 2750 dnlc_remove(dvp, nm); 2751 2752 /* 2753 * If the file has a v_count > 1 then there may be more than one 2754 * entry in the name cache due multiple links or an open file, 2755 * but we don't have the real reference count so flush all 2756 * possible entries. 2757 */ 2758 if (vp->v_count > 1) 2759 dnlc_purge_vp(vp); 2760 2761 /* 2762 * Now we have the real reference count on the vnode 2763 */ 2764 rp = VTOR(vp); 2765 mutex_enter(&rp->r_statelock); 2766 if (vp->v_count > 1 && 2767 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2768 mutex_exit(&rp->r_statelock); 2769 tmpname = newname(); 2770 error = nfs3rename(dvp, nm, dvp, tmpname, cr); 2771 if (error) 2772 kmem_free(tmpname, MAXNAMELEN); 2773 else { 2774 mutex_enter(&rp->r_statelock); 2775 if (rp->r_unldvp == NULL) { 2776 VN_HOLD(dvp); 2777 rp->r_unldvp = dvp; 2778 if (rp->r_unlcred != NULL) 2779 crfree(rp->r_unlcred); 2780 crhold(cr); 2781 rp->r_unlcred = cr; 2782 rp->r_unlname = tmpname; 2783 } else { 2784 kmem_free(rp->r_unlname, MAXNAMELEN); 2785 rp->r_unlname = tmpname; 2786 } 2787 mutex_exit(&rp->r_statelock); 2788 } 2789 } else { 2790 mutex_exit(&rp->r_statelock); 2791 /* 2792 * We need to flush any dirty pages which happen to 2793 * be hanging around before removing the file. This 2794 * shouldn't happen very often and mostly on file 2795 * systems mounted "nocto". 2796 */ 2797 if (vn_has_cached_data(vp) && 2798 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2799 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr); 2800 if (error && (error == ENOSPC || error == EDQUOT)) { 2801 mutex_enter(&rp->r_statelock); 2802 if (!rp->r_error) 2803 rp->r_error = error; 2804 mutex_exit(&rp->r_statelock); 2805 } 2806 } 2807 2808 setdiropargs3(&args.object, nm, dvp); 2809 2810 douprintf = 1; 2811 2812 t = gethrtime(); 2813 2814 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE, 2815 xdr_diropargs3, (caddr_t)&args, 2816 xdr_REMOVE3res, (caddr_t)&res, cr, 2817 &douprintf, &res.status, 0, NULL); 2818 2819 /* 2820 * The xattr dir may be gone after last attr is removed, 2821 * so flush it from dnlc. 2822 */ 2823 if (dvp->v_flag & V_XATTRDIR) 2824 dnlc_purge_vp(dvp); 2825 2826 PURGE_ATTRCACHE(vp); 2827 2828 if (error) { 2829 PURGE_ATTRCACHE(dvp); 2830 } else { 2831 error = geterrno3(res.status); 2832 if (!error) { 2833 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, 2834 cr); 2835 if (HAVE_RDDIR_CACHE(drp)) 2836 nfs_purge_rddir_cache(dvp); 2837 } else { 2838 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, 2839 t, cr); 2840 PURGE_STALE_FH(error, dvp, cr); 2841 } 2842 } 2843 } 2844 2845 VN_RELE(vp); 2846 2847 nfs_rw_exit(&drp->r_rwlock); 2848 2849 return (error); 2850 } 2851 2852 static int 2853 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr) 2854 { 2855 int error; 2856 LINK3args args; 2857 LINK3res res; 2858 vnode_t *realvp; 2859 int douprintf; 2860 mntinfo_t *mi; 2861 rnode_t *tdrp; 2862 hrtime_t t; 2863 2864 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2865 return (EPERM); 2866 if (VOP_REALVP(svp, &realvp) == 0) 2867 svp = realvp; 2868 2869 mi = VTOMI(svp); 2870 2871 if (!(mi->mi_flags & MI_LINK)) 2872 return (EOPNOTSUPP); 2873 2874 args.file = *VTOFH3(svp); 2875 setdiropargs3(&args.link, tnm, tdvp); 2876 2877 tdrp = VTOR(tdvp); 2878 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2879 return (EINTR); 2880 2881 dnlc_remove(tdvp, tnm); 2882 2883 douprintf = 1; 2884 2885 t = gethrtime(); 2886 2887 error = rfs3call(mi, NFSPROC3_LINK, 2888 xdr_LINK3args, (caddr_t)&args, 2889 xdr_LINK3res, (caddr_t)&res, cr, 2890 &douprintf, &res.status, 0, NULL); 2891 2892 if (error) { 2893 PURGE_ATTRCACHE(tdvp); 2894 PURGE_ATTRCACHE(svp); 2895 nfs_rw_exit(&tdrp->r_rwlock); 2896 return (error); 2897 } 2898 2899 error = geterrno3(res.status); 2900 2901 if (!error) { 2902 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr); 2903 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr); 2904 if (HAVE_RDDIR_CACHE(tdrp)) 2905 nfs_purge_rddir_cache(tdvp); 2906 dnlc_update(tdvp, tnm, svp); 2907 } else { 2908 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t, 2909 cr); 2910 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr); 2911 if (error == EOPNOTSUPP) { 2912 mutex_enter(&mi->mi_lock); 2913 mi->mi_flags &= ~MI_LINK; 2914 mutex_exit(&mi->mi_lock); 2915 } 2916 } 2917 2918 nfs_rw_exit(&tdrp->r_rwlock); 2919 2920 return (error); 2921 } 2922 2923 static int 2924 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 2925 { 2926 vnode_t *realvp; 2927 2928 if (nfs_zone() != VTOMI(odvp)->mi_zone) 2929 return (EPERM); 2930 if (VOP_REALVP(ndvp, &realvp) == 0) 2931 ndvp = realvp; 2932 2933 return (nfs3rename(odvp, onm, ndvp, nnm, cr)); 2934 } 2935 2936 /* 2937 * nfs3rename does the real work of renaming in NFS Version 3. 2938 */ 2939 static int 2940 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 2941 { 2942 int error; 2943 RENAME3args args; 2944 RENAME3res res; 2945 int douprintf; 2946 vnode_t *nvp; 2947 vnode_t *ovp = NULL; 2948 char *tmpname; 2949 rnode_t *rp; 2950 rnode_t *odrp; 2951 rnode_t *ndrp; 2952 hrtime_t t; 2953 2954 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 2955 2956 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 2957 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 2958 return (EINVAL); 2959 2960 odrp = VTOR(odvp); 2961 ndrp = VTOR(ndvp); 2962 if ((intptr_t)odrp < (intptr_t)ndrp) { 2963 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 2964 return (EINTR); 2965 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 2966 nfs_rw_exit(&odrp->r_rwlock); 2967 return (EINTR); 2968 } 2969 } else { 2970 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 2971 return (EINTR); 2972 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 2973 nfs_rw_exit(&ndrp->r_rwlock); 2974 return (EINTR); 2975 } 2976 } 2977 2978 /* 2979 * Lookup the target file. If it exists, it needs to be 2980 * checked to see whether it is a mount point and whether 2981 * it is active (open). 2982 */ 2983 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 2984 if (!error) { 2985 /* 2986 * If this file has been mounted on, then just 2987 * return busy because renaming to it would remove 2988 * the mounted file system from the name space. 2989 */ 2990 if (vn_mountedvfs(nvp) != NULL) { 2991 VN_RELE(nvp); 2992 nfs_rw_exit(&odrp->r_rwlock); 2993 nfs_rw_exit(&ndrp->r_rwlock); 2994 return (EBUSY); 2995 } 2996 2997 /* 2998 * Purge the name cache of all references to this vnode 2999 * so that we can check the reference count to infer 3000 * whether it is active or not. 3001 */ 3002 /* 3003 * First just remove the entry from the name cache, as it 3004 * is most likely the only entry for this vp. 3005 */ 3006 dnlc_remove(ndvp, nnm); 3007 /* 3008 * If the file has a v_count > 1 then there may be more 3009 * than one entry in the name cache due multiple links 3010 * or an open file, but we don't have the real reference 3011 * count so flush all possible entries. 3012 */ 3013 if (nvp->v_count > 1) 3014 dnlc_purge_vp(nvp); 3015 3016 /* 3017 * If the vnode is active and is not a directory, 3018 * arrange to rename it to a 3019 * temporary file so that it will continue to be 3020 * accessible. This implements the "unlink-open-file" 3021 * semantics for the target of a rename operation. 3022 * Before doing this though, make sure that the 3023 * source and target files are not already the same. 3024 */ 3025 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 3026 /* 3027 * Lookup the source name. 3028 */ 3029 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, 3030 cr, 0); 3031 3032 /* 3033 * The source name *should* already exist. 3034 */ 3035 if (error) { 3036 VN_RELE(nvp); 3037 nfs_rw_exit(&odrp->r_rwlock); 3038 nfs_rw_exit(&ndrp->r_rwlock); 3039 return (error); 3040 } 3041 3042 /* 3043 * Compare the two vnodes. If they are the same, 3044 * just release all held vnodes and return success. 3045 */ 3046 if (ovp == nvp) { 3047 VN_RELE(ovp); 3048 VN_RELE(nvp); 3049 nfs_rw_exit(&odrp->r_rwlock); 3050 nfs_rw_exit(&ndrp->r_rwlock); 3051 return (0); 3052 } 3053 3054 /* 3055 * Can't mix and match directories and non- 3056 * directories in rename operations. We already 3057 * know that the target is not a directory. If 3058 * the source is a directory, return an error. 3059 */ 3060 if (ovp->v_type == VDIR) { 3061 VN_RELE(ovp); 3062 VN_RELE(nvp); 3063 nfs_rw_exit(&odrp->r_rwlock); 3064 nfs_rw_exit(&ndrp->r_rwlock); 3065 return (ENOTDIR); 3066 } 3067 3068 /* 3069 * The target file exists, is not the same as 3070 * the source file, and is active. Link it 3071 * to a temporary filename to avoid having 3072 * the server removing the file completely. 3073 */ 3074 tmpname = newname(); 3075 error = nfs3_link(ndvp, nvp, tmpname, cr); 3076 if (error == EOPNOTSUPP) { 3077 error = nfs3_rename(ndvp, nnm, ndvp, tmpname, 3078 cr); 3079 } 3080 if (error) { 3081 kmem_free(tmpname, MAXNAMELEN); 3082 VN_RELE(ovp); 3083 VN_RELE(nvp); 3084 nfs_rw_exit(&odrp->r_rwlock); 3085 nfs_rw_exit(&ndrp->r_rwlock); 3086 return (error); 3087 } 3088 rp = VTOR(nvp); 3089 mutex_enter(&rp->r_statelock); 3090 if (rp->r_unldvp == NULL) { 3091 VN_HOLD(ndvp); 3092 rp->r_unldvp = ndvp; 3093 if (rp->r_unlcred != NULL) 3094 crfree(rp->r_unlcred); 3095 crhold(cr); 3096 rp->r_unlcred = cr; 3097 rp->r_unlname = tmpname; 3098 } else { 3099 kmem_free(rp->r_unlname, MAXNAMELEN); 3100 rp->r_unlname = tmpname; 3101 } 3102 mutex_exit(&rp->r_statelock); 3103 } 3104 3105 VN_RELE(nvp); 3106 } 3107 3108 if (ovp == NULL) { 3109 /* 3110 * When renaming directories to be a subdirectory of a 3111 * different parent, the dnlc entry for ".." will no 3112 * longer be valid, so it must be removed. 3113 * 3114 * We do a lookup here to determine whether we are renaming 3115 * a directory and we need to check if we are renaming 3116 * an unlinked file. This might have already been done 3117 * in previous code, so we check ovp == NULL to avoid 3118 * doing it twice. 3119 */ 3120 3121 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 3122 /* 3123 * The source name *should* already exist. 3124 */ 3125 if (error) { 3126 nfs_rw_exit(&odrp->r_rwlock); 3127 nfs_rw_exit(&ndrp->r_rwlock); 3128 return (error); 3129 } 3130 ASSERT(ovp != NULL); 3131 } 3132 3133 dnlc_remove(odvp, onm); 3134 dnlc_remove(ndvp, nnm); 3135 3136 setdiropargs3(&args.from, onm, odvp); 3137 setdiropargs3(&args.to, nnm, ndvp); 3138 3139 douprintf = 1; 3140 3141 t = gethrtime(); 3142 3143 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME, 3144 xdr_RENAME3args, (caddr_t)&args, 3145 xdr_RENAME3res, (caddr_t)&res, cr, 3146 &douprintf, &res.status, 0, NULL); 3147 3148 if (error) { 3149 PURGE_ATTRCACHE(odvp); 3150 PURGE_ATTRCACHE(ndvp); 3151 VN_RELE(ovp); 3152 nfs_rw_exit(&odrp->r_rwlock); 3153 nfs_rw_exit(&ndrp->r_rwlock); 3154 return (error); 3155 } 3156 3157 error = geterrno3(res.status); 3158 3159 if (!error) { 3160 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr); 3161 if (HAVE_RDDIR_CACHE(odrp)) 3162 nfs_purge_rddir_cache(odvp); 3163 if (ndvp != odvp) { 3164 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr); 3165 if (HAVE_RDDIR_CACHE(ndrp)) 3166 nfs_purge_rddir_cache(ndvp); 3167 } 3168 /* 3169 * when renaming directories to be a subdirectory of a 3170 * different parent, the dnlc entry for ".." will no 3171 * longer be valid, so it must be removed 3172 */ 3173 rp = VTOR(ovp); 3174 if (ndvp != odvp) { 3175 if (ovp->v_type == VDIR) { 3176 dnlc_remove(ovp, ".."); 3177 if (HAVE_RDDIR_CACHE(rp)) 3178 nfs_purge_rddir_cache(ovp); 3179 } 3180 } 3181 3182 /* 3183 * If we are renaming the unlinked file, update the 3184 * r_unldvp and r_unlname as needed. 3185 */ 3186 mutex_enter(&rp->r_statelock); 3187 if (rp->r_unldvp != NULL) { 3188 if (strcmp(rp->r_unlname, onm) == 0) { 3189 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 3190 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 3191 3192 if (ndvp != rp->r_unldvp) { 3193 VN_RELE(rp->r_unldvp); 3194 rp->r_unldvp = ndvp; 3195 VN_HOLD(ndvp); 3196 } 3197 } 3198 } 3199 mutex_exit(&rp->r_statelock); 3200 } else { 3201 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr); 3202 if (ndvp != odvp) { 3203 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t, 3204 cr); 3205 } 3206 /* 3207 * System V defines rename to return EEXIST, not 3208 * ENOTEMPTY if the target directory is not empty. 3209 * Over the wire, the error is NFSERR_ENOTEMPTY 3210 * which geterrno maps to ENOTEMPTY. 3211 */ 3212 if (error == ENOTEMPTY) 3213 error = EEXIST; 3214 } 3215 3216 VN_RELE(ovp); 3217 3218 nfs_rw_exit(&odrp->r_rwlock); 3219 nfs_rw_exit(&ndrp->r_rwlock); 3220 3221 return (error); 3222 } 3223 3224 static int 3225 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr) 3226 { 3227 int error; 3228 MKDIR3args args; 3229 MKDIR3res res; 3230 int douprintf; 3231 struct vattr vattr; 3232 vnode_t *vp; 3233 rnode_t *drp; 3234 hrtime_t t; 3235 3236 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3237 return (EPERM); 3238 setdiropargs3(&args.where, nm, dvp); 3239 3240 /* 3241 * Decide what the group-id and set-gid bit of the created directory 3242 * should be. May have to do a setattr to get the gid right. 3243 */ 3244 error = setdirgid(dvp, &va->va_gid, cr); 3245 if (error) 3246 return (error); 3247 error = setdirmode(dvp, &va->va_mode, cr); 3248 if (error) 3249 return (error); 3250 va->va_mask |= AT_MODE|AT_GID; 3251 3252 error = vattr_to_sattr3(va, &args.attributes); 3253 if (error) { 3254 /* req time field(s) overflow - return immediately */ 3255 return (error); 3256 } 3257 3258 drp = VTOR(dvp); 3259 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3260 return (EINTR); 3261 3262 dnlc_remove(dvp, nm); 3263 3264 douprintf = 1; 3265 3266 t = gethrtime(); 3267 3268 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR, 3269 xdr_MKDIR3args, (caddr_t)&args, 3270 xdr_MKDIR3res, (caddr_t)&res, cr, 3271 &douprintf, &res.status, 0, NULL); 3272 3273 if (error) { 3274 PURGE_ATTRCACHE(dvp); 3275 nfs_rw_exit(&drp->r_rwlock); 3276 return (error); 3277 } 3278 3279 error = geterrno3(res.status); 3280 if (!error) { 3281 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3282 if (HAVE_RDDIR_CACHE(drp)) 3283 nfs_purge_rddir_cache(dvp); 3284 3285 if (!res.resok.obj.handle_follows) { 3286 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3287 if (error) { 3288 nfs_rw_exit(&drp->r_rwlock); 3289 return (error); 3290 } 3291 } else { 3292 if (res.resok.obj_attributes.attributes) { 3293 vp = makenfs3node(&res.resok.obj.handle, 3294 &res.resok.obj_attributes.attr, 3295 dvp->v_vfsp, t, cr, NULL, NULL); 3296 } else { 3297 vp = makenfs3node(&res.resok.obj.handle, NULL, 3298 dvp->v_vfsp, t, cr, NULL, NULL); 3299 if (vp->v_type == VNON) { 3300 vattr.va_mask = AT_TYPE; 3301 error = nfs3getattr(vp, &vattr, cr); 3302 if (error) { 3303 VN_RELE(vp); 3304 nfs_rw_exit(&drp->r_rwlock); 3305 return (error); 3306 } 3307 vp->v_type = vattr.va_type; 3308 } 3309 } 3310 dnlc_update(dvp, nm, vp); 3311 } 3312 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 3313 va->va_mask = AT_GID; 3314 (void) nfs3setattr(vp, va, 0, cr); 3315 } 3316 *vpp = vp; 3317 } else { 3318 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3319 PURGE_STALE_FH(error, dvp, cr); 3320 } 3321 3322 nfs_rw_exit(&drp->r_rwlock); 3323 3324 return (error); 3325 } 3326 3327 static int 3328 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr) 3329 { 3330 int error; 3331 RMDIR3args args; 3332 RMDIR3res res; 3333 vnode_t *vp; 3334 int douprintf; 3335 rnode_t *drp; 3336 hrtime_t t; 3337 3338 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3339 return (EPERM); 3340 drp = VTOR(dvp); 3341 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3342 return (EINTR); 3343 3344 /* 3345 * Attempt to prevent a rmdir(".") from succeeding. 3346 */ 3347 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3348 if (error) { 3349 nfs_rw_exit(&drp->r_rwlock); 3350 return (error); 3351 } 3352 3353 if (vp == cdir) { 3354 VN_RELE(vp); 3355 nfs_rw_exit(&drp->r_rwlock); 3356 return (EINVAL); 3357 } 3358 3359 setdiropargs3(&args.object, nm, dvp); 3360 3361 /* 3362 * First just remove the entry from the name cache, as it 3363 * is most likely an entry for this vp. 3364 */ 3365 dnlc_remove(dvp, nm); 3366 3367 /* 3368 * If there vnode reference count is greater than one, then 3369 * there may be additional references in the DNLC which will 3370 * need to be purged. First, trying removing the entry for 3371 * the parent directory and see if that removes the additional 3372 * reference(s). If that doesn't do it, then use dnlc_purge_vp 3373 * to completely remove any references to the directory which 3374 * might still exist in the DNLC. 3375 */ 3376 if (vp->v_count > 1) { 3377 dnlc_remove(vp, ".."); 3378 if (vp->v_count > 1) 3379 dnlc_purge_vp(vp); 3380 } 3381 3382 douprintf = 1; 3383 3384 t = gethrtime(); 3385 3386 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR, 3387 xdr_diropargs3, (caddr_t)&args, 3388 xdr_RMDIR3res, (caddr_t)&res, cr, 3389 &douprintf, &res.status, 0, NULL); 3390 3391 PURGE_ATTRCACHE(vp); 3392 3393 if (error) { 3394 PURGE_ATTRCACHE(dvp); 3395 VN_RELE(vp); 3396 nfs_rw_exit(&drp->r_rwlock); 3397 return (error); 3398 } 3399 3400 error = geterrno3(res.status); 3401 if (!error) { 3402 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3403 if (HAVE_RDDIR_CACHE(drp)) 3404 nfs_purge_rddir_cache(dvp); 3405 if (HAVE_RDDIR_CACHE(VTOR(vp))) 3406 nfs_purge_rddir_cache(vp); 3407 } else { 3408 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3409 PURGE_STALE_FH(error, dvp, cr); 3410 /* 3411 * System V defines rmdir to return EEXIST, not 3412 * ENOTEMPTY if the directory is not empty. Over 3413 * the wire, the error is NFSERR_ENOTEMPTY which 3414 * geterrno maps to ENOTEMPTY. 3415 */ 3416 if (error == ENOTEMPTY) 3417 error = EEXIST; 3418 } 3419 3420 VN_RELE(vp); 3421 3422 nfs_rw_exit(&drp->r_rwlock); 3423 3424 return (error); 3425 } 3426 3427 static int 3428 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr) 3429 { 3430 int error; 3431 SYMLINK3args args; 3432 SYMLINK3res res; 3433 int douprintf; 3434 mntinfo_t *mi; 3435 vnode_t *vp; 3436 rnode_t *rp; 3437 char *contents; 3438 rnode_t *drp; 3439 hrtime_t t; 3440 3441 mi = VTOMI(dvp); 3442 3443 if (nfs_zone() != mi->mi_zone) 3444 return (EPERM); 3445 if (!(mi->mi_flags & MI_SYMLINK)) 3446 return (EOPNOTSUPP); 3447 3448 setdiropargs3(&args.where, lnm, dvp); 3449 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes); 3450 if (error) { 3451 /* req time field(s) overflow - return immediately */ 3452 return (error); 3453 } 3454 args.symlink.symlink_data = tnm; 3455 3456 drp = VTOR(dvp); 3457 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3458 return (EINTR); 3459 3460 dnlc_remove(dvp, lnm); 3461 3462 douprintf = 1; 3463 3464 t = gethrtime(); 3465 3466 error = rfs3call(mi, NFSPROC3_SYMLINK, 3467 xdr_SYMLINK3args, (caddr_t)&args, 3468 xdr_SYMLINK3res, (caddr_t)&res, cr, 3469 &douprintf, &res.status, 0, NULL); 3470 3471 if (error) { 3472 PURGE_ATTRCACHE(dvp); 3473 nfs_rw_exit(&drp->r_rwlock); 3474 return (error); 3475 } 3476 3477 error = geterrno3(res.status); 3478 if (!error) { 3479 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3480 if (HAVE_RDDIR_CACHE(drp)) 3481 nfs_purge_rddir_cache(dvp); 3482 3483 if (res.resok.obj.handle_follows) { 3484 if (res.resok.obj_attributes.attributes) { 3485 vp = makenfs3node(&res.resok.obj.handle, 3486 &res.resok.obj_attributes.attr, 3487 dvp->v_vfsp, t, cr, NULL, NULL); 3488 } else { 3489 vp = makenfs3node(&res.resok.obj.handle, NULL, 3490 dvp->v_vfsp, t, cr, NULL, NULL); 3491 vp->v_type = VLNK; 3492 vp->v_rdev = 0; 3493 } 3494 dnlc_update(dvp, lnm, vp); 3495 rp = VTOR(vp); 3496 if (nfs3_do_symlink_cache && 3497 rp->r_symlink.contents == NULL) { 3498 3499 contents = kmem_alloc(MAXPATHLEN, 3500 KM_NOSLEEP); 3501 3502 if (contents != NULL) { 3503 mutex_enter(&rp->r_statelock); 3504 if (rp->r_symlink.contents == NULL) { 3505 rp->r_symlink.len = strlen(tnm); 3506 bcopy(tnm, contents, 3507 rp->r_symlink.len); 3508 rp->r_symlink.contents = 3509 contents; 3510 rp->r_symlink.size = MAXPATHLEN; 3511 mutex_exit(&rp->r_statelock); 3512 } else { 3513 mutex_exit(&rp->r_statelock); 3514 kmem_free((void *)contents, 3515 MAXPATHLEN); 3516 } 3517 } 3518 } 3519 VN_RELE(vp); 3520 } 3521 } else { 3522 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3523 PURGE_STALE_FH(error, dvp, cr); 3524 if (error == EOPNOTSUPP) { 3525 mutex_enter(&mi->mi_lock); 3526 mi->mi_flags &= ~MI_SYMLINK; 3527 mutex_exit(&mi->mi_lock); 3528 } 3529 } 3530 3531 nfs_rw_exit(&drp->r_rwlock); 3532 3533 return (error); 3534 } 3535 3536 #ifdef DEBUG 3537 static int nfs3_readdir_cache_hits = 0; 3538 static int nfs3_readdir_cache_shorts = 0; 3539 static int nfs3_readdir_cache_waits = 0; 3540 static int nfs3_readdir_cache_misses = 0; 3541 static int nfs3_readdir_readahead = 0; 3542 #endif 3543 3544 static int nfs3_shrinkreaddir = 0; 3545 3546 /* 3547 * Read directory entries. 3548 * There are some weird things to look out for here. The uio_loffset 3549 * field is either 0 or it is the offset returned from a previous 3550 * readdir. It is an opaque value used by the server to find the 3551 * correct directory block to read. The count field is the number 3552 * of blocks to read on the server. This is advisory only, the server 3553 * may return only one block's worth of entries. Entries may be compressed 3554 * on the server. 3555 */ 3556 static int 3557 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp) 3558 { 3559 int error; 3560 size_t count; 3561 rnode_t *rp; 3562 rddir_cache *rdc; 3563 rddir_cache *nrdc; 3564 rddir_cache *rrdc; 3565 #ifdef DEBUG 3566 int missed; 3567 #endif 3568 int doreadahead; 3569 rddir_cache srdc; 3570 avl_index_t where; 3571 3572 if (nfs_zone() != VTOMI(vp)->mi_zone) 3573 return (EIO); 3574 rp = VTOR(vp); 3575 3576 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 3577 3578 /* 3579 * Make sure that the directory cache is valid. 3580 */ 3581 if (HAVE_RDDIR_CACHE(rp)) { 3582 if (nfs_disable_rddir_cache) { 3583 /* 3584 * Setting nfs_disable_rddir_cache in /etc/system 3585 * allows interoperability with servers that do not 3586 * properly update the attributes of directories. 3587 * Any cached information gets purged before an 3588 * access is made to it. 3589 */ 3590 nfs_purge_rddir_cache(vp); 3591 } else { 3592 error = nfs3_validate_caches(vp, cr); 3593 if (error) 3594 return (error); 3595 } 3596 } 3597 3598 /* 3599 * It is possible that some servers may not be able to correctly 3600 * handle a large READDIR or READDIRPLUS request due to bugs in 3601 * their implementation. In order to continue to interoperate 3602 * with them, this workaround is provided to limit the maximum 3603 * size of a READDIRPLUS request to 1024. In any case, the request 3604 * size is limited to MAXBSIZE. 3605 */ 3606 count = MIN(uiop->uio_iov->iov_len, 3607 nfs3_shrinkreaddir ? 1024 : MAXBSIZE); 3608 3609 nrdc = NULL; 3610 #ifdef DEBUG 3611 missed = 0; 3612 #endif 3613 top: 3614 /* 3615 * Short circuit last readdir which always returns 0 bytes. 3616 * This can be done after the directory has been read through 3617 * completely at least once. This will set r_direof which 3618 * can be used to find the value of the last cookie. 3619 */ 3620 mutex_enter(&rp->r_statelock); 3621 if (rp->r_direof != NULL && 3622 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) { 3623 mutex_exit(&rp->r_statelock); 3624 #ifdef DEBUG 3625 nfs3_readdir_cache_shorts++; 3626 #endif 3627 if (eofp) 3628 *eofp = 1; 3629 if (nrdc != NULL) 3630 rddir_cache_rele(nrdc); 3631 return (0); 3632 } 3633 /* 3634 * Look for a cache entry. Cache entries are identified 3635 * by the NFS cookie value and the byte count requested. 3636 */ 3637 srdc.nfs3_cookie = uiop->uio_loffset; 3638 srdc.buflen = count; 3639 rdc = avl_find(&rp->r_dir, &srdc, &where); 3640 if (rdc != NULL) { 3641 rddir_cache_hold(rdc); 3642 /* 3643 * If the cache entry is in the process of being 3644 * filled in, wait until this completes. The 3645 * RDDIRWAIT bit is set to indicate that someone 3646 * is waiting and then the thread currently 3647 * filling the entry is done, it should do a 3648 * cv_broadcast to wakeup all of the threads 3649 * waiting for it to finish. 3650 */ 3651 if (rdc->flags & RDDIR) { 3652 nfs_rw_exit(&rp->r_rwlock); 3653 rdc->flags |= RDDIRWAIT; 3654 #ifdef DEBUG 3655 nfs3_readdir_cache_waits++; 3656 #endif 3657 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3658 /* 3659 * We got interrupted, probably 3660 * the user typed ^C or an alarm 3661 * fired. We free the new entry 3662 * if we allocated one. 3663 */ 3664 mutex_exit(&rp->r_statelock); 3665 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3666 RW_READER, FALSE); 3667 rddir_cache_rele(rdc); 3668 if (nrdc != NULL) 3669 rddir_cache_rele(nrdc); 3670 return (EINTR); 3671 } 3672 mutex_exit(&rp->r_statelock); 3673 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3674 RW_READER, FALSE); 3675 rddir_cache_rele(rdc); 3676 goto top; 3677 } 3678 /* 3679 * Check to see if a readdir is required to 3680 * fill the entry. If so, mark this entry 3681 * as being filled, remove our reference, 3682 * and branch to the code to fill the entry. 3683 */ 3684 if (rdc->flags & RDDIRREQ) { 3685 rdc->flags &= ~RDDIRREQ; 3686 rdc->flags |= RDDIR; 3687 if (nrdc != NULL) 3688 rddir_cache_rele(nrdc); 3689 nrdc = rdc; 3690 mutex_exit(&rp->r_statelock); 3691 goto bottom; 3692 } 3693 #ifdef DEBUG 3694 if (!missed) 3695 nfs3_readdir_cache_hits++; 3696 #endif 3697 /* 3698 * If an error occurred while attempting 3699 * to fill the cache entry, just return it. 3700 */ 3701 if (rdc->error) { 3702 error = rdc->error; 3703 mutex_exit(&rp->r_statelock); 3704 rddir_cache_rele(rdc); 3705 if (nrdc != NULL) 3706 rddir_cache_rele(nrdc); 3707 return (error); 3708 } 3709 3710 /* 3711 * The cache entry is complete and good, 3712 * copyout the dirent structs to the calling 3713 * thread. 3714 */ 3715 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3716 3717 /* 3718 * If no error occurred during the copyout, 3719 * update the offset in the uio struct to 3720 * contain the value of the next cookie 3721 * and set the eof value appropriately. 3722 */ 3723 if (!error) { 3724 uiop->uio_loffset = rdc->nfs3_ncookie; 3725 if (eofp) 3726 *eofp = rdc->eof; 3727 } 3728 3729 /* 3730 * Decide whether to do readahead. 3731 * 3732 * Don't if have already read to the end of 3733 * directory. There is nothing more to read. 3734 * 3735 * Don't if the application is not doing 3736 * lookups in the directory. The readahead 3737 * is only effective if the application can 3738 * be doing work while an async thread is 3739 * handling the over the wire request. 3740 */ 3741 if (rdc->eof) { 3742 rp->r_direof = rdc; 3743 doreadahead = FALSE; 3744 } else if (!(rp->r_flags & RLOOKUP)) 3745 doreadahead = FALSE; 3746 else 3747 doreadahead = TRUE; 3748 3749 if (!doreadahead) { 3750 mutex_exit(&rp->r_statelock); 3751 rddir_cache_rele(rdc); 3752 if (nrdc != NULL) 3753 rddir_cache_rele(nrdc); 3754 return (error); 3755 } 3756 3757 /* 3758 * Check to see whether we found an entry 3759 * for the readahead. If so, we don't need 3760 * to do anything further, so free the new 3761 * entry if one was allocated. Otherwise, 3762 * allocate a new entry, add it to the cache, 3763 * and then initiate an asynchronous readdir 3764 * operation to fill it. 3765 */ 3766 srdc.nfs3_cookie = rdc->nfs3_ncookie; 3767 srdc.buflen = count; 3768 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3769 if (rrdc != NULL) { 3770 if (nrdc != NULL) 3771 rddir_cache_rele(nrdc); 3772 } else { 3773 if (nrdc != NULL) 3774 rrdc = nrdc; 3775 else { 3776 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3777 } 3778 if (rrdc != NULL) { 3779 rrdc->nfs3_cookie = rdc->nfs3_ncookie; 3780 rrdc->buflen = count; 3781 avl_insert(&rp->r_dir, rrdc, where); 3782 rddir_cache_hold(rrdc); 3783 mutex_exit(&rp->r_statelock); 3784 rddir_cache_rele(rdc); 3785 #ifdef DEBUG 3786 nfs3_readdir_readahead++; 3787 #endif 3788 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir); 3789 return (error); 3790 } 3791 } 3792 3793 mutex_exit(&rp->r_statelock); 3794 rddir_cache_rele(rdc); 3795 return (error); 3796 } 3797 3798 /* 3799 * Didn't find an entry in the cache. Construct a new empty 3800 * entry and link it into the cache. Other processes attempting 3801 * to access this entry will need to wait until it is filled in. 3802 * 3803 * Since kmem_alloc may block, another pass through the cache 3804 * will need to be taken to make sure that another process 3805 * hasn't already added an entry to the cache for this request. 3806 */ 3807 if (nrdc == NULL) { 3808 mutex_exit(&rp->r_statelock); 3809 nrdc = rddir_cache_alloc(KM_SLEEP); 3810 nrdc->nfs3_cookie = uiop->uio_loffset; 3811 nrdc->buflen = count; 3812 goto top; 3813 } 3814 3815 /* 3816 * Add this entry to the cache. 3817 */ 3818 avl_insert(&rp->r_dir, nrdc, where); 3819 rddir_cache_hold(nrdc); 3820 mutex_exit(&rp->r_statelock); 3821 3822 bottom: 3823 #ifdef DEBUG 3824 missed = 1; 3825 nfs3_readdir_cache_misses++; 3826 #endif 3827 /* 3828 * Do the readdir. This routine decides whether to use 3829 * READDIR or READDIRPLUS. 3830 */ 3831 error = do_nfs3readdir(vp, nrdc, cr); 3832 3833 /* 3834 * If this operation failed, just return the error which occurred. 3835 */ 3836 if (error != 0) 3837 return (error); 3838 3839 /* 3840 * Since the RPC operation will have taken sometime and blocked 3841 * this process, another pass through the cache will need to be 3842 * taken to find the correct cache entry. It is possible that 3843 * the correct cache entry will not be there (although one was 3844 * added) because the directory changed during the RPC operation 3845 * and the readdir cache was flushed. In this case, just start 3846 * over. It is hoped that this will not happen too often... :-) 3847 */ 3848 nrdc = NULL; 3849 goto top; 3850 /* NOTREACHED */ 3851 } 3852 3853 static int 3854 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3855 { 3856 int error; 3857 rnode_t *rp; 3858 mntinfo_t *mi; 3859 3860 rp = VTOR(vp); 3861 mi = VTOMI(vp); 3862 ASSERT(nfs_zone() == mi->mi_zone); 3863 /* 3864 * Issue the proper request. 3865 * 3866 * If the server does not support READDIRPLUS, then use READDIR. 3867 * 3868 * Otherwise -- 3869 * Issue a READDIRPLUS if reading to fill an empty cache or if 3870 * an application has performed a lookup in the directory which 3871 * required an over the wire lookup. The use of READDIRPLUS 3872 * will help to (re)populate the DNLC. 3873 */ 3874 if (!(mi->mi_flags & MI_READDIRONLY) && 3875 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) { 3876 if (rp->r_flags & RREADDIRPLUS) { 3877 mutex_enter(&rp->r_statelock); 3878 rp->r_flags &= ~RREADDIRPLUS; 3879 mutex_exit(&rp->r_statelock); 3880 } 3881 nfs3readdirplus(vp, rdc, cr); 3882 if (rdc->error == EOPNOTSUPP) 3883 nfs3readdir(vp, rdc, cr); 3884 } else 3885 nfs3readdir(vp, rdc, cr); 3886 3887 mutex_enter(&rp->r_statelock); 3888 rdc->flags &= ~RDDIR; 3889 if (rdc->flags & RDDIRWAIT) { 3890 rdc->flags &= ~RDDIRWAIT; 3891 cv_broadcast(&rdc->cv); 3892 } 3893 error = rdc->error; 3894 if (error) 3895 rdc->flags |= RDDIRREQ; 3896 mutex_exit(&rp->r_statelock); 3897 3898 rddir_cache_rele(rdc); 3899 3900 return (error); 3901 } 3902 3903 static void 3904 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3905 { 3906 int error; 3907 READDIR3args args; 3908 READDIR3vres res; 3909 vattr_t dva; 3910 rnode_t *rp; 3911 int douprintf; 3912 failinfo_t fi, *fip = NULL; 3913 mntinfo_t *mi; 3914 hrtime_t t; 3915 3916 rp = VTOR(vp); 3917 mi = VTOMI(vp); 3918 ASSERT(nfs_zone() == mi->mi_zone); 3919 3920 args.dir = *RTOFH3(rp); 3921 args.cookie = (cookie3)rdc->nfs3_cookie; 3922 args.cookieverf = rp->r_cookieverf; 3923 args.count = rdc->buflen; 3924 3925 /* 3926 * NFS client failover support 3927 * suppress failover unless we have a zero cookie 3928 */ 3929 if (args.cookie == (cookie3) 0) { 3930 fi.vp = vp; 3931 fi.fhp = (caddr_t)&args.dir; 3932 fi.copyproc = nfs3copyfh; 3933 fi.lookupproc = nfs3lookup; 3934 fi.xattrdirproc = acl_getxattrdir3; 3935 fip = &fi; 3936 } 3937 3938 #ifdef DEBUG 3939 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 3940 #else 3941 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3942 #endif 3943 3944 res.entries = (dirent64_t *)rdc->entries; 3945 res.entries_size = rdc->buflen; 3946 res.dir_attributes.fres.vap = &dva; 3947 res.dir_attributes.fres.vp = vp; 3948 res.loff = rdc->nfs3_cookie; 3949 3950 douprintf = 1; 3951 3952 if (mi->mi_io_kstats) { 3953 mutex_enter(&mi->mi_lock); 3954 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3955 mutex_exit(&mi->mi_lock); 3956 } 3957 3958 t = gethrtime(); 3959 3960 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR, 3961 xdr_READDIR3args, (caddr_t)&args, 3962 xdr_READDIR3vres, (caddr_t)&res, cr, 3963 &douprintf, &res.status, 0, fip); 3964 3965 if (mi->mi_io_kstats) { 3966 mutex_enter(&mi->mi_lock); 3967 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3968 mutex_exit(&mi->mi_lock); 3969 } 3970 3971 if (error) 3972 goto err; 3973 3974 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr); 3975 3976 error = geterrno3(res.status); 3977 if (error) { 3978 PURGE_STALE_FH(error, vp, cr); 3979 goto err; 3980 } 3981 3982 if (mi->mi_io_kstats) { 3983 mutex_enter(&mi->mi_lock); 3984 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3985 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 3986 mutex_exit(&mi->mi_lock); 3987 } 3988 3989 rdc->nfs3_ncookie = res.loff; 3990 rp->r_cookieverf = res.cookieverf; 3991 rdc->eof = res.eof ? 1 : 0; 3992 rdc->entlen = res.size; 3993 ASSERT(rdc->entlen <= rdc->buflen); 3994 rdc->error = 0; 3995 return; 3996 3997 err: 3998 kmem_free(rdc->entries, rdc->buflen); 3999 rdc->entries = NULL; 4000 rdc->error = error; 4001 } 4002 4003 /* 4004 * Read directory entries. 4005 * There are some weird things to look out for here. The uio_loffset 4006 * field is either 0 or it is the offset returned from a previous 4007 * readdir. It is an opaque value used by the server to find the 4008 * correct directory block to read. The count field is the number 4009 * of blocks to read on the server. This is advisory only, the server 4010 * may return only one block's worth of entries. Entries may be compressed 4011 * on the server. 4012 */ 4013 static void 4014 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4015 { 4016 int error; 4017 READDIRPLUS3args args; 4018 READDIRPLUS3vres res; 4019 vattr_t dva; 4020 rnode_t *rp; 4021 mntinfo_t *mi; 4022 int douprintf; 4023 failinfo_t fi, *fip = NULL; 4024 4025 rp = VTOR(vp); 4026 mi = VTOMI(vp); 4027 ASSERT(nfs_zone() == mi->mi_zone); 4028 4029 args.dir = *RTOFH3(rp); 4030 args.cookie = (cookie3)rdc->nfs3_cookie; 4031 args.cookieverf = rp->r_cookieverf; 4032 args.dircount = rdc->buflen; 4033 args.maxcount = mi->mi_tsize; 4034 4035 /* 4036 * NFS client failover support 4037 * suppress failover unless we have a zero cookie 4038 */ 4039 if (args.cookie == (cookie3)0) { 4040 fi.vp = vp; 4041 fi.fhp = (caddr_t)&args.dir; 4042 fi.copyproc = nfs3copyfh; 4043 fi.lookupproc = nfs3lookup; 4044 fi.xattrdirproc = acl_getxattrdir3; 4045 fip = &fi; 4046 } 4047 4048 #ifdef DEBUG 4049 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4050 #else 4051 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4052 #endif 4053 4054 res.entries = (dirent64_t *)rdc->entries; 4055 res.entries_size = rdc->buflen; 4056 res.dir_attributes.fres.vap = &dva; 4057 res.dir_attributes.fres.vp = vp; 4058 res.loff = rdc->nfs3_cookie; 4059 res.credentials = cr; 4060 4061 douprintf = 1; 4062 4063 if (mi->mi_io_kstats) { 4064 mutex_enter(&mi->mi_lock); 4065 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4066 mutex_exit(&mi->mi_lock); 4067 } 4068 4069 res.time = gethrtime(); 4070 4071 error = rfs3call(mi, NFSPROC3_READDIRPLUS, 4072 xdr_READDIRPLUS3args, (caddr_t)&args, 4073 xdr_READDIRPLUS3vres, (caddr_t)&res, cr, 4074 &douprintf, &res.status, 0, fip); 4075 4076 if (mi->mi_io_kstats) { 4077 mutex_enter(&mi->mi_lock); 4078 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4079 mutex_exit(&mi->mi_lock); 4080 } 4081 4082 if (error) { 4083 goto err; 4084 } 4085 4086 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr); 4087 4088 error = geterrno3(res.status); 4089 if (error) { 4090 PURGE_STALE_FH(error, vp, cr); 4091 if (error == EOPNOTSUPP) { 4092 mutex_enter(&mi->mi_lock); 4093 mi->mi_flags |= MI_READDIRONLY; 4094 mutex_exit(&mi->mi_lock); 4095 } 4096 goto err; 4097 } 4098 4099 if (mi->mi_io_kstats) { 4100 mutex_enter(&mi->mi_lock); 4101 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4102 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4103 mutex_exit(&mi->mi_lock); 4104 } 4105 4106 rdc->nfs3_ncookie = res.loff; 4107 rp->r_cookieverf = res.cookieverf; 4108 rdc->eof = res.eof ? 1 : 0; 4109 rdc->entlen = res.size; 4110 ASSERT(rdc->entlen <= rdc->buflen); 4111 rdc->error = 0; 4112 4113 return; 4114 4115 err: 4116 kmem_free(rdc->entries, rdc->buflen); 4117 rdc->entries = NULL; 4118 rdc->error = error; 4119 } 4120 4121 #ifdef DEBUG 4122 static int nfs3_bio_do_stop = 0; 4123 #endif 4124 4125 static int 4126 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr) 4127 { 4128 rnode_t *rp = VTOR(bp->b_vp); 4129 int count; 4130 int error; 4131 cred_t *cred; 4132 offset_t offset; 4133 4134 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 4135 offset = ldbtob(bp->b_lblkno); 4136 4137 DTRACE_IO1(start, struct buf *, bp); 4138 4139 if (bp->b_flags & B_READ) { 4140 mutex_enter(&rp->r_statelock); 4141 if (rp->r_cred != NULL) { 4142 cred = rp->r_cred; 4143 crhold(cred); 4144 } else { 4145 rp->r_cred = cr; 4146 crhold(cr); 4147 cred = cr; 4148 crhold(cred); 4149 } 4150 mutex_exit(&rp->r_statelock); 4151 read_again: 4152 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr, 4153 offset, bp->b_bcount, &bp->b_resid, cred); 4154 crfree(cred); 4155 if (!error) { 4156 if (bp->b_resid) { 4157 /* 4158 * Didn't get it all because we hit EOF, 4159 * zero all the memory beyond the EOF. 4160 */ 4161 /* bzero(rdaddr + */ 4162 bzero(bp->b_un.b_addr + 4163 bp->b_bcount - bp->b_resid, bp->b_resid); 4164 } 4165 mutex_enter(&rp->r_statelock); 4166 if (bp->b_resid == bp->b_bcount && 4167 offset >= rp->r_size) { 4168 /* 4169 * We didn't read anything at all as we are 4170 * past EOF. Return an error indicator back 4171 * but don't destroy the pages (yet). 4172 */ 4173 error = NFS_EOF; 4174 } 4175 mutex_exit(&rp->r_statelock); 4176 } else if (error == EACCES) { 4177 mutex_enter(&rp->r_statelock); 4178 if (cred != cr) { 4179 if (rp->r_cred != NULL) 4180 crfree(rp->r_cred); 4181 rp->r_cred = cr; 4182 crhold(cr); 4183 cred = cr; 4184 crhold(cred); 4185 mutex_exit(&rp->r_statelock); 4186 goto read_again; 4187 } 4188 mutex_exit(&rp->r_statelock); 4189 } 4190 } else { 4191 if (!(rp->r_flags & RSTALE)) { 4192 mutex_enter(&rp->r_statelock); 4193 if (rp->r_cred != NULL) { 4194 cred = rp->r_cred; 4195 crhold(cred); 4196 } else { 4197 rp->r_cred = cr; 4198 crhold(cr); 4199 cred = cr; 4200 crhold(cred); 4201 } 4202 mutex_exit(&rp->r_statelock); 4203 write_again: 4204 mutex_enter(&rp->r_statelock); 4205 count = MIN(bp->b_bcount, rp->r_size - offset); 4206 mutex_exit(&rp->r_statelock); 4207 if (count < 0) 4208 cmn_err(CE_PANIC, "nfs3_bio: write count < 0"); 4209 #ifdef DEBUG 4210 if (count == 0) { 4211 zcmn_err(getzoneid(), CE_WARN, 4212 "nfs3_bio: zero length write at %lld", 4213 offset); 4214 nfs_printfhandle(&rp->r_fh); 4215 if (nfs3_bio_do_stop) 4216 debug_enter("nfs3_bio"); 4217 } 4218 #endif 4219 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset, 4220 count, cred, stab_comm); 4221 if (error == EACCES) { 4222 mutex_enter(&rp->r_statelock); 4223 if (cred != cr) { 4224 if (rp->r_cred != NULL) 4225 crfree(rp->r_cred); 4226 rp->r_cred = cr; 4227 crhold(cr); 4228 crfree(cred); 4229 cred = cr; 4230 crhold(cred); 4231 mutex_exit(&rp->r_statelock); 4232 goto write_again; 4233 } 4234 mutex_exit(&rp->r_statelock); 4235 } 4236 bp->b_error = error; 4237 if (error && error != EINTR) { 4238 /* 4239 * Don't print EDQUOT errors on the console. 4240 * Don't print asynchronous EACCES errors. 4241 * Don't print EFBIG errors. 4242 * Print all other write errors. 4243 */ 4244 if (error != EDQUOT && error != EFBIG && 4245 (error != EACCES || 4246 !(bp->b_flags & B_ASYNC))) 4247 nfs_write_error(bp->b_vp, error, cred); 4248 /* 4249 * Update r_error and r_flags as appropriate. 4250 * If the error was ESTALE, then mark the 4251 * rnode as not being writeable and save 4252 * the error status. Otherwise, save any 4253 * errors which occur from asynchronous 4254 * page invalidations. Any errors occurring 4255 * from other operations should be saved 4256 * by the caller. 4257 */ 4258 mutex_enter(&rp->r_statelock); 4259 if (error == ESTALE) { 4260 rp->r_flags |= RSTALE; 4261 if (!rp->r_error) 4262 rp->r_error = error; 4263 } else if (!rp->r_error && 4264 (bp->b_flags & 4265 (B_INVAL|B_FORCE|B_ASYNC)) == 4266 (B_INVAL|B_FORCE|B_ASYNC)) { 4267 rp->r_error = error; 4268 } 4269 mutex_exit(&rp->r_statelock); 4270 } 4271 crfree(cred); 4272 } else 4273 error = rp->r_error; 4274 } 4275 4276 if (error != 0 && error != NFS_EOF) 4277 bp->b_flags |= B_ERROR; 4278 4279 DTRACE_IO1(done, struct buf *, bp); 4280 4281 return (error); 4282 } 4283 4284 static int 4285 nfs3_fid(vnode_t *vp, fid_t *fidp) 4286 { 4287 rnode_t *rp; 4288 4289 if (nfs_zone() != VTOMI(vp)->mi_zone) 4290 return (EIO); 4291 rp = VTOR(vp); 4292 4293 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) { 4294 fidp->fid_len = rp->r_fh.fh_len; 4295 return (ENOSPC); 4296 } 4297 fidp->fid_len = rp->r_fh.fh_len; 4298 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len); 4299 return (0); 4300 } 4301 4302 /* ARGSUSED2 */ 4303 static int 4304 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4305 { 4306 rnode_t *rp = VTOR(vp); 4307 4308 if (!write_lock) { 4309 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4310 return (V_WRITELOCK_FALSE); 4311 } 4312 4313 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 4314 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4315 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 4316 return (V_WRITELOCK_FALSE); 4317 nfs_rw_exit(&rp->r_rwlock); 4318 } 4319 4320 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 4321 return (V_WRITELOCK_TRUE); 4322 } 4323 4324 /* ARGSUSED */ 4325 static void 4326 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4327 { 4328 rnode_t *rp = VTOR(vp); 4329 4330 nfs_rw_exit(&rp->r_rwlock); 4331 } 4332 4333 /* ARGSUSED */ 4334 static int 4335 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 4336 { 4337 4338 /* 4339 * Because we stuff the readdir cookie into the offset field 4340 * someone may attempt to do an lseek with the cookie which 4341 * we want to succeed. 4342 */ 4343 if (vp->v_type == VDIR) 4344 return (0); 4345 if (*noffp < 0) 4346 return (EINVAL); 4347 return (0); 4348 } 4349 4350 /* 4351 * number of nfs3_bsize blocks to read ahead. 4352 */ 4353 static int nfs3_nra = 4; 4354 4355 #ifdef DEBUG 4356 static int nfs3_lostpage = 0; /* number of times we lost original page */ 4357 #endif 4358 4359 /* 4360 * Return all the pages from [off..off+len) in file 4361 */ 4362 static int 4363 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4364 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4365 enum seg_rw rw, cred_t *cr) 4366 { 4367 rnode_t *rp; 4368 int error; 4369 mntinfo_t *mi; 4370 4371 if (vp->v_flag & VNOMAP) 4372 return (ENOSYS); 4373 4374 if (nfs_zone() != VTOMI(vp)->mi_zone) 4375 return (EIO); 4376 if (protp != NULL) 4377 *protp = PROT_ALL; 4378 4379 /* 4380 * Now valididate that the caches are up to date. 4381 */ 4382 error = nfs3_validate_caches(vp, cr); 4383 if (error) 4384 return (error); 4385 4386 rp = VTOR(vp); 4387 mi = VTOMI(vp); 4388 retry: 4389 mutex_enter(&rp->r_statelock); 4390 4391 /* 4392 * Don't create dirty pages faster than they 4393 * can be cleaned so that the system doesn't 4394 * get imbalanced. If the async queue is 4395 * maxed out, then wait for it to drain before 4396 * creating more dirty pages. Also, wait for 4397 * any threads doing pagewalks in the vop_getattr 4398 * entry points so that they don't block for 4399 * long periods. 4400 */ 4401 if (rw == S_CREATE) { 4402 while ((mi->mi_max_threads != 0 && 4403 rp->r_awcount > 2 * mi->mi_max_threads) || 4404 rp->r_gcount > 0) 4405 cv_wait(&rp->r_cv, &rp->r_statelock); 4406 } 4407 4408 /* 4409 * If we are getting called as a side effect of an nfs_write() 4410 * operation the local file size might not be extended yet. 4411 * In this case we want to be able to return pages of zeroes. 4412 */ 4413 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 4414 mutex_exit(&rp->r_statelock); 4415 return (EFAULT); /* beyond EOF */ 4416 } 4417 4418 mutex_exit(&rp->r_statelock); 4419 4420 if (len <= PAGESIZE) { 4421 error = nfs3_getapage(vp, off, len, protp, pl, plsz, 4422 seg, addr, rw, cr); 4423 } else { 4424 error = pvn_getpages(nfs3_getapage, vp, off, len, protp, 4425 pl, plsz, seg, addr, rw, cr); 4426 } 4427 4428 switch (error) { 4429 case NFS_EOF: 4430 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 4431 goto retry; 4432 case ESTALE: 4433 PURGE_STALE_FH(error, vp, cr); 4434 } 4435 4436 return (error); 4437 } 4438 4439 /* 4440 * Called from pvn_getpages or nfs3_getpage to get a particular page. 4441 */ 4442 /* ARGSUSED */ 4443 static int 4444 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 4445 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4446 enum seg_rw rw, cred_t *cr) 4447 { 4448 rnode_t *rp; 4449 uint_t bsize; 4450 struct buf *bp; 4451 page_t *pp; 4452 u_offset_t lbn; 4453 u_offset_t io_off; 4454 u_offset_t blkoff; 4455 u_offset_t rablkoff; 4456 size_t io_len; 4457 uint_t blksize; 4458 int error; 4459 int readahead; 4460 int readahead_issued = 0; 4461 int ra_window; /* readahead window */ 4462 page_t *pagefound; 4463 page_t *savepp; 4464 4465 if (nfs_zone() != VTOMI(vp)->mi_zone) 4466 return (EIO); 4467 rp = VTOR(vp); 4468 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4469 4470 reread: 4471 bp = NULL; 4472 pp = NULL; 4473 pagefound = NULL; 4474 4475 if (pl != NULL) 4476 pl[0] = NULL; 4477 4478 error = 0; 4479 lbn = off / bsize; 4480 blkoff = lbn * bsize; 4481 4482 /* 4483 * Queueing up the readahead before doing the synchronous read 4484 * results in a significant increase in read throughput because 4485 * of the increased parallelism between the async threads and 4486 * the process context. 4487 */ 4488 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 4489 rw != S_CREATE && 4490 !(vp->v_flag & VNOCACHE)) { 4491 mutex_enter(&rp->r_statelock); 4492 4493 /* 4494 * Calculate the number of readaheads to do. 4495 * a) No readaheads at offset = 0. 4496 * b) Do maximum(nfs3_nra) readaheads when the readahead 4497 * window is closed. 4498 * c) Do readaheads between 1 to (nfs3_nra - 1) depending 4499 * upon how far the readahead window is open or close. 4500 * d) No readaheads if rp->r_nextr is not within the scope 4501 * of the readahead window (random i/o). 4502 */ 4503 4504 if (off == 0) 4505 readahead = 0; 4506 else if (blkoff == rp->r_nextr) 4507 readahead = nfs3_nra; 4508 else if (rp->r_nextr > blkoff && 4509 ((ra_window = (rp->r_nextr - blkoff) / bsize) 4510 <= (nfs3_nra - 1))) 4511 readahead = nfs3_nra - ra_window; 4512 else 4513 readahead = 0; 4514 4515 rablkoff = rp->r_nextr; 4516 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 4517 mutex_exit(&rp->r_statelock); 4518 if (nfs_async_readahead(vp, rablkoff + bsize, 4519 addr + (rablkoff + bsize - off), seg, cr, 4520 nfs3_readahead) < 0) { 4521 mutex_enter(&rp->r_statelock); 4522 break; 4523 } 4524 readahead--; 4525 rablkoff += bsize; 4526 /* 4527 * Indicate that we did a readahead so 4528 * readahead offset is not updated 4529 * by the synchronous read below. 4530 */ 4531 readahead_issued = 1; 4532 mutex_enter(&rp->r_statelock); 4533 /* 4534 * set readahead offset to 4535 * offset of last async readahead 4536 * request. 4537 */ 4538 rp->r_nextr = rablkoff; 4539 } 4540 mutex_exit(&rp->r_statelock); 4541 } 4542 4543 again: 4544 if ((pagefound = page_exists(vp, off)) == NULL) { 4545 if (pl == NULL) { 4546 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 4547 nfs3_readahead); 4548 } else if (rw == S_CREATE) { 4549 /* 4550 * Block for this page is not allocated, or the offset 4551 * is beyond the current allocation size, or we're 4552 * allocating a swap slot and the page was not found, 4553 * so allocate it and return a zero page. 4554 */ 4555 if ((pp = page_create_va(vp, off, 4556 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 4557 cmn_err(CE_PANIC, "nfs3_getapage: page_create"); 4558 io_len = PAGESIZE; 4559 mutex_enter(&rp->r_statelock); 4560 rp->r_nextr = off + PAGESIZE; 4561 mutex_exit(&rp->r_statelock); 4562 } else { 4563 /* 4564 * Need to go to server to get a BLOCK, exception to 4565 * that being while reading at offset = 0 or doing 4566 * random i/o, in that case read only a PAGE. 4567 */ 4568 mutex_enter(&rp->r_statelock); 4569 if (blkoff < rp->r_size && 4570 blkoff + bsize >= rp->r_size) { 4571 /* 4572 * If only a block or less is left in 4573 * the file, read all that is remaining. 4574 */ 4575 if (rp->r_size <= off) { 4576 /* 4577 * Trying to access beyond EOF, 4578 * set up to get at least one page. 4579 */ 4580 blksize = off + PAGESIZE - blkoff; 4581 } else 4582 blksize = rp->r_size - blkoff; 4583 } else if ((off == 0) || 4584 (off != rp->r_nextr && !readahead_issued)) { 4585 blksize = PAGESIZE; 4586 blkoff = off; /* block = page here */ 4587 } else 4588 blksize = bsize; 4589 mutex_exit(&rp->r_statelock); 4590 4591 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4592 &io_len, blkoff, blksize, 0); 4593 4594 /* 4595 * Some other thread has entered the page, 4596 * so just use it. 4597 */ 4598 if (pp == NULL) 4599 goto again; 4600 4601 /* 4602 * Now round the request size up to page boundaries. 4603 * This ensures that the entire page will be 4604 * initialized to zeroes if EOF is encountered. 4605 */ 4606 io_len = ptob(btopr(io_len)); 4607 4608 bp = pageio_setup(pp, io_len, vp, B_READ); 4609 ASSERT(bp != NULL); 4610 4611 /* 4612 * pageio_setup should have set b_addr to 0. This 4613 * is correct since we want to do I/O on a page 4614 * boundary. bp_mapin will use this addr to calculate 4615 * an offset, and then set b_addr to the kernel virtual 4616 * address it allocated for us. 4617 */ 4618 ASSERT(bp->b_un.b_addr == 0); 4619 4620 bp->b_edev = 0; 4621 bp->b_dev = 0; 4622 bp->b_lblkno = lbtodb(io_off); 4623 bp->b_file = vp; 4624 bp->b_offset = (offset_t)off; 4625 bp_mapin(bp); 4626 4627 /* 4628 * If doing a write beyond what we believe is EOF, 4629 * don't bother trying to read the pages from the 4630 * server, we'll just zero the pages here. We 4631 * don't check that the rw flag is S_WRITE here 4632 * because some implementations may attempt a 4633 * read access to the buffer before copying data. 4634 */ 4635 mutex_enter(&rp->r_statelock); 4636 if (io_off >= rp->r_size && seg == segkmap) { 4637 mutex_exit(&rp->r_statelock); 4638 bzero(bp->b_un.b_addr, io_len); 4639 } else { 4640 mutex_exit(&rp->r_statelock); 4641 error = nfs3_bio(bp, NULL, cr); 4642 } 4643 4644 /* 4645 * Unmap the buffer before freeing it. 4646 */ 4647 bp_mapout(bp); 4648 pageio_done(bp); 4649 4650 savepp = pp; 4651 do { 4652 pp->p_fsdata = C_NOCOMMIT; 4653 } while ((pp = pp->p_next) != savepp); 4654 4655 if (error == NFS_EOF) { 4656 /* 4657 * If doing a write system call just return 4658 * zeroed pages, else user tried to get pages 4659 * beyond EOF, return error. We don't check 4660 * that the rw flag is S_WRITE here because 4661 * some implementations may attempt a read 4662 * access to the buffer before copying data. 4663 */ 4664 if (seg == segkmap) 4665 error = 0; 4666 else 4667 error = EFAULT; 4668 } 4669 4670 if (!readahead_issued && !error) { 4671 mutex_enter(&rp->r_statelock); 4672 rp->r_nextr = io_off + io_len; 4673 mutex_exit(&rp->r_statelock); 4674 } 4675 } 4676 } 4677 4678 out: 4679 if (pl == NULL) 4680 return (error); 4681 4682 if (error) { 4683 if (pp != NULL) 4684 pvn_read_done(pp, B_ERROR); 4685 return (error); 4686 } 4687 4688 if (pagefound) { 4689 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 4690 4691 /* 4692 * Page exists in the cache, acquire the appropriate lock. 4693 * If this fails, start all over again. 4694 */ 4695 if ((pp = page_lookup(vp, off, se)) == NULL) { 4696 #ifdef DEBUG 4697 nfs3_lostpage++; 4698 #endif 4699 goto reread; 4700 } 4701 pl[0] = pp; 4702 pl[1] = NULL; 4703 return (0); 4704 } 4705 4706 if (pp != NULL) 4707 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4708 4709 return (error); 4710 } 4711 4712 static void 4713 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 4714 cred_t *cr) 4715 { 4716 int error; 4717 page_t *pp; 4718 u_offset_t io_off; 4719 size_t io_len; 4720 struct buf *bp; 4721 uint_t bsize, blksize; 4722 rnode_t *rp = VTOR(vp); 4723 page_t *savepp; 4724 4725 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4726 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4727 4728 mutex_enter(&rp->r_statelock); 4729 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 4730 /* 4731 * If less than a block left in file read less 4732 * than a block. 4733 */ 4734 blksize = rp->r_size - blkoff; 4735 } else 4736 blksize = bsize; 4737 mutex_exit(&rp->r_statelock); 4738 4739 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 4740 &io_off, &io_len, blkoff, blksize, 1); 4741 /* 4742 * The isra flag passed to the kluster function is 1, we may have 4743 * gotten a return value of NULL for a variety of reasons (# of free 4744 * pages < minfree, someone entered the page on the vnode etc). In all 4745 * cases, we want to punt on the readahead. 4746 */ 4747 if (pp == NULL) 4748 return; 4749 4750 /* 4751 * Now round the request size up to page boundaries. 4752 * This ensures that the entire page will be 4753 * initialized to zeroes if EOF is encountered. 4754 */ 4755 io_len = ptob(btopr(io_len)); 4756 4757 bp = pageio_setup(pp, io_len, vp, B_READ); 4758 ASSERT(bp != NULL); 4759 4760 /* 4761 * pageio_setup should have set b_addr to 0. This is correct since 4762 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4763 * to calculate an offset, and then set b_addr to the kernel virtual 4764 * address it allocated for us. 4765 */ 4766 ASSERT(bp->b_un.b_addr == 0); 4767 4768 bp->b_edev = 0; 4769 bp->b_dev = 0; 4770 bp->b_lblkno = lbtodb(io_off); 4771 bp->b_file = vp; 4772 bp->b_offset = (offset_t)blkoff; 4773 bp_mapin(bp); 4774 4775 /* 4776 * If doing a write beyond what we believe is EOF, don't bother trying 4777 * to read the pages from the server, we'll just zero the pages here. 4778 * We don't check that the rw flag is S_WRITE here because some 4779 * implementations may attempt a read access to the buffer before 4780 * copying data. 4781 */ 4782 mutex_enter(&rp->r_statelock); 4783 if (io_off >= rp->r_size && seg == segkmap) { 4784 mutex_exit(&rp->r_statelock); 4785 bzero(bp->b_un.b_addr, io_len); 4786 error = 0; 4787 } else { 4788 mutex_exit(&rp->r_statelock); 4789 error = nfs3_bio(bp, NULL, cr); 4790 if (error == NFS_EOF) 4791 error = 0; 4792 } 4793 4794 /* 4795 * Unmap the buffer before freeing it. 4796 */ 4797 bp_mapout(bp); 4798 pageio_done(bp); 4799 4800 savepp = pp; 4801 do { 4802 pp->p_fsdata = C_NOCOMMIT; 4803 } while ((pp = pp->p_next) != savepp); 4804 4805 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4806 4807 /* 4808 * In case of error set readahead offset 4809 * to the lowest offset. 4810 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4811 */ 4812 if (error && rp->r_nextr > io_off) { 4813 mutex_enter(&rp->r_statelock); 4814 if (rp->r_nextr > io_off) 4815 rp->r_nextr = io_off; 4816 mutex_exit(&rp->r_statelock); 4817 } 4818 } 4819 4820 /* 4821 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4822 * If len == 0, do from off to EOF. 4823 * 4824 * The normal cases should be len == 0 && off == 0 (entire vp list), 4825 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4826 * (from pageout). 4827 */ 4828 static int 4829 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 4830 { 4831 int error; 4832 rnode_t *rp; 4833 4834 ASSERT(cr != NULL); 4835 4836 /* 4837 * XXX - Why should this check be made here? 4838 */ 4839 if (vp->v_flag & VNOMAP) 4840 return (ENOSYS); 4841 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4842 return (0); 4843 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4844 return (EIO); 4845 4846 rp = VTOR(vp); 4847 mutex_enter(&rp->r_statelock); 4848 rp->r_count++; 4849 mutex_exit(&rp->r_statelock); 4850 error = nfs_putpages(vp, off, len, flags, cr); 4851 mutex_enter(&rp->r_statelock); 4852 rp->r_count--; 4853 cv_broadcast(&rp->r_cv); 4854 mutex_exit(&rp->r_statelock); 4855 4856 return (error); 4857 } 4858 4859 /* 4860 * Write out a single page, possibly klustering adjacent dirty pages. 4861 */ 4862 int 4863 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4864 int flags, cred_t *cr) 4865 { 4866 u_offset_t io_off; 4867 u_offset_t lbn_off; 4868 u_offset_t lbn; 4869 size_t io_len; 4870 uint_t bsize; 4871 int error; 4872 rnode_t *rp; 4873 4874 ASSERT(!vn_is_readonly(vp)); 4875 ASSERT(pp != NULL); 4876 ASSERT(cr != NULL); 4877 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 4878 4879 rp = VTOR(vp); 4880 ASSERT(rp->r_count > 0); 4881 4882 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4883 lbn = pp->p_offset / bsize; 4884 lbn_off = lbn * bsize; 4885 4886 /* 4887 * Find a kluster that fits in one block, or in 4888 * one page if pages are bigger than blocks. If 4889 * there is less file space allocated than a whole 4890 * page, we'll shorten the i/o request below. 4891 */ 4892 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 4893 roundup(bsize, PAGESIZE), flags); 4894 4895 /* 4896 * pvn_write_kluster shouldn't have returned a page with offset 4897 * behind the original page we were given. Verify that. 4898 */ 4899 ASSERT((pp->p_offset / bsize) >= lbn); 4900 4901 /* 4902 * Now pp will have the list of kept dirty pages marked for 4903 * write back. It will also handle invalidation and freeing 4904 * of pages that are not dirty. Check for page length rounding 4905 * problems. 4906 */ 4907 if (io_off + io_len > lbn_off + bsize) { 4908 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 4909 io_len = lbn_off + bsize - io_off; 4910 } 4911 /* 4912 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4913 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 4914 * When RMODINPROGRESS is set it indicates that a uiomove() is in 4915 * progress and the r_size has not been made consistent with the 4916 * new size of the file. When the uiomove() completes the r_size is 4917 * updated and the RMODINPROGRESS flag is cleared. 4918 * 4919 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4920 * consistent value of r_size. Without this handshaking, it is 4921 * possible that nfs(3)_bio() picks up the old value of r_size 4922 * before the uiomove() in writerp() completes. This will result 4923 * in the write through nfs(3)_bio() being dropped. 4924 * 4925 * More precisely, there is a window between the time the uiomove() 4926 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 4927 * operation intervenes in this window, the page will be picked up, 4928 * because it is dirty (it will be unlocked, unless it was 4929 * pagecreate'd). When the page is picked up as dirty, the dirty 4930 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 4931 * checked. This will still be the old size. Therefore the page will 4932 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 4933 * the page will be found to be clean and the write will be dropped. 4934 */ 4935 if (rp->r_flags & RMODINPROGRESS) { 4936 mutex_enter(&rp->r_statelock); 4937 if ((rp->r_flags & RMODINPROGRESS) && 4938 rp->r_modaddr + MAXBSIZE > io_off && 4939 rp->r_modaddr < io_off + io_len) { 4940 page_t *plist; 4941 /* 4942 * A write is in progress for this region of the file. 4943 * If we did not detect RMODINPROGRESS here then this 4944 * path through nfs_putapage() would eventually go to 4945 * nfs(3)_bio() and may not write out all of the data 4946 * in the pages. We end up losing data. So we decide 4947 * to set the modified bit on each page in the page 4948 * list and mark the rnode with RDIRTY. This write 4949 * will be restarted at some later time. 4950 */ 4951 plist = pp; 4952 while (plist != NULL) { 4953 pp = plist; 4954 page_sub(&plist, pp); 4955 hat_setmod(pp); 4956 page_io_unlock(pp); 4957 page_unlock(pp); 4958 } 4959 rp->r_flags |= RDIRTY; 4960 mutex_exit(&rp->r_statelock); 4961 if (offp) 4962 *offp = io_off; 4963 if (lenp) 4964 *lenp = io_len; 4965 return (0); 4966 } 4967 mutex_exit(&rp->r_statelock); 4968 } 4969 4970 if (flags & B_ASYNC) { 4971 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 4972 nfs3_sync_putapage); 4973 } else 4974 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr); 4975 4976 if (offp) 4977 *offp = io_off; 4978 if (lenp) 4979 *lenp = io_len; 4980 return (error); 4981 } 4982 4983 static int 4984 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4985 int flags, cred_t *cr) 4986 { 4987 int error; 4988 rnode_t *rp; 4989 4990 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4991 4992 flags |= B_WRITE; 4993 4994 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4995 4996 rp = VTOR(vp); 4997 4998 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 4999 error == EACCES) && 5000 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 5001 if (!(rp->r_flags & ROUTOFSPACE)) { 5002 mutex_enter(&rp->r_statelock); 5003 rp->r_flags |= ROUTOFSPACE; 5004 mutex_exit(&rp->r_statelock); 5005 } 5006 flags |= B_ERROR; 5007 pvn_write_done(pp, flags); 5008 /* 5009 * If this was not an async thread, then try again to 5010 * write out the pages, but this time, also destroy 5011 * them whether or not the write is successful. This 5012 * will prevent memory from filling up with these 5013 * pages and destroying them is the only alternative 5014 * if they can't be written out. 5015 * 5016 * Don't do this if this is an async thread because 5017 * when the pages are unlocked in pvn_write_done, 5018 * some other thread could have come along, locked 5019 * them, and queued for an async thread. It would be 5020 * possible for all of the async threads to be tied 5021 * up waiting to lock the pages again and they would 5022 * all already be locked and waiting for an async 5023 * thread to handle them. Deadlock. 5024 */ 5025 if (!(flags & B_ASYNC)) { 5026 error = nfs3_putpage(vp, io_off, io_len, 5027 B_INVAL | B_FORCE, cr); 5028 } 5029 } else { 5030 if (error) 5031 flags |= B_ERROR; 5032 else if (rp->r_flags & ROUTOFSPACE) { 5033 mutex_enter(&rp->r_statelock); 5034 rp->r_flags &= ~ROUTOFSPACE; 5035 mutex_exit(&rp->r_statelock); 5036 } 5037 pvn_write_done(pp, flags); 5038 if (freemem < desfree) 5039 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr); 5040 } 5041 5042 return (error); 5043 } 5044 5045 static int 5046 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5047 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 5048 { 5049 struct segvn_crargs vn_a; 5050 int error; 5051 rnode_t *rp; 5052 struct vattr va; 5053 5054 if (nfs_zone() != VTOMI(vp)->mi_zone) 5055 return (EIO); 5056 5057 if (vp->v_flag & VNOMAP) 5058 return (ENOSYS); 5059 5060 if (off < 0 || off + len < 0) 5061 return (ENXIO); 5062 5063 if (vp->v_type != VREG) 5064 return (ENODEV); 5065 5066 /* 5067 * If there is cached data and if close-to-open consistency 5068 * checking is not turned off and if the file system is not 5069 * mounted readonly, then force an over the wire getattr. 5070 * Otherwise, just invoke nfs3getattr to get a copy of the 5071 * attributes. The attribute cache will be used unless it 5072 * is timed out and if it is, then an over the wire getattr 5073 * will be issued. 5074 */ 5075 va.va_mask = AT_ALL; 5076 if (vn_has_cached_data(vp) && 5077 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 5078 error = nfs3_getattr_otw(vp, &va, cr); 5079 else 5080 error = nfs3getattr(vp, &va, cr); 5081 if (error) 5082 return (error); 5083 5084 /* 5085 * Check to see if the vnode is currently marked as not cachable. 5086 * This means portions of the file are locked (through VOP_FRLOCK). 5087 * In this case the map request must be refused. We use 5088 * rp->r_lkserlock to avoid a race with concurrent lock requests. 5089 */ 5090 rp = VTOR(vp); 5091 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 5092 return (EINTR); 5093 5094 if (vp->v_flag & VNOCACHE) { 5095 error = EAGAIN; 5096 goto done; 5097 } 5098 5099 /* 5100 * Don't allow concurrent locks and mapping if mandatory locking is 5101 * enabled. 5102 */ 5103 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 5104 MANDLOCK(vp, va.va_mode)) { 5105 error = EAGAIN; 5106 goto done; 5107 } 5108 5109 as_rangelock(as); 5110 if (!(flags & MAP_FIXED)) { 5111 map_addr(addrp, len, off, 1, flags); 5112 if (*addrp == NULL) { 5113 as_rangeunlock(as); 5114 error = ENOMEM; 5115 goto done; 5116 } 5117 } else { 5118 /* 5119 * User specified address - blow away any previous mappings 5120 */ 5121 (void) as_unmap(as, *addrp, len); 5122 } 5123 5124 vn_a.vp = vp; 5125 vn_a.offset = off; 5126 vn_a.type = (flags & MAP_TYPE); 5127 vn_a.prot = (uchar_t)prot; 5128 vn_a.maxprot = (uchar_t)maxprot; 5129 vn_a.flags = (flags & ~MAP_TYPE); 5130 vn_a.cred = cr; 5131 vn_a.amp = NULL; 5132 vn_a.szc = 0; 5133 vn_a.lgrp_mem_policy_flags = 0; 5134 5135 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5136 as_rangeunlock(as); 5137 5138 done: 5139 nfs_rw_exit(&rp->r_lkserlock); 5140 return (error); 5141 } 5142 5143 /* ARGSUSED */ 5144 static int 5145 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5146 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 5147 { 5148 rnode_t *rp; 5149 5150 if (vp->v_flag & VNOMAP) 5151 return (ENOSYS); 5152 if (nfs_zone() != VTOMI(vp)->mi_zone) 5153 return (EIO); 5154 5155 /* 5156 * Need to hold rwlock while incrementing the mapcnt so that 5157 * mmap'ing can be serialized with writes so that the caching 5158 * can be handled correctly. 5159 */ 5160 rp = VTOR(vp); 5161 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 5162 return (EINTR); 5163 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 5164 nfs_rw_exit(&rp->r_rwlock); 5165 5166 return (0); 5167 } 5168 5169 static int 5170 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5171 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr) 5172 { 5173 netobj lm_fh3; 5174 int rc; 5175 u_offset_t start, end; 5176 rnode_t *rp; 5177 int error = 0, intr = INTR(vp); 5178 5179 if (nfs_zone() != VTOMI(vp)->mi_zone) 5180 return (EIO); 5181 /* check for valid cmd parameter */ 5182 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 5183 return (EINVAL); 5184 5185 /* Verify l_type. */ 5186 switch (bfp->l_type) { 5187 case F_RDLCK: 5188 if (cmd != F_GETLK && !(flag & FREAD)) 5189 return (EBADF); 5190 break; 5191 case F_WRLCK: 5192 if (cmd != F_GETLK && !(flag & FWRITE)) 5193 return (EBADF); 5194 break; 5195 case F_UNLCK: 5196 intr = 0; 5197 break; 5198 5199 default: 5200 return (EINVAL); 5201 } 5202 5203 /* check the validity of the lock range */ 5204 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 5205 return (rc); 5206 if (rc = flk_check_lock_data(start, end, MAXEND)) 5207 return (rc); 5208 5209 /* 5210 * If the filesystem is mounted using local locking, pass the 5211 * request off to the local locking code. 5212 */ 5213 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 5214 if (cmd == F_SETLK || cmd == F_SETLKW) { 5215 /* 5216 * For complete safety, we should be holding 5217 * r_lkserlock. However, we can't call 5218 * lm_safelock and then fs_frlock while 5219 * holding r_lkserlock, so just invoke 5220 * lm_safelock and expect that this will 5221 * catch enough of the cases. 5222 */ 5223 if (!lm_safelock(vp, bfp, cr)) 5224 return (EAGAIN); 5225 } 5226 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 5227 } 5228 5229 rp = VTOR(vp); 5230 5231 /* 5232 * Check whether the given lock request can proceed, given the 5233 * current file mappings. 5234 */ 5235 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 5236 return (EINTR); 5237 if (cmd == F_SETLK || cmd == F_SETLKW) { 5238 if (!lm_safelock(vp, bfp, cr)) { 5239 rc = EAGAIN; 5240 goto done; 5241 } 5242 } 5243 5244 /* 5245 * Flush the cache after waiting for async I/O to finish. For new 5246 * locks, this is so that the process gets the latest bits from the 5247 * server. For unlocks, this is so that other clients see the 5248 * latest bits once the file has been unlocked. If currently dirty 5249 * pages can't be flushed, then don't allow a lock to be set. But 5250 * allow unlocks to succeed, to avoid having orphan locks on the 5251 * server. 5252 */ 5253 if (cmd != F_GETLK) { 5254 mutex_enter(&rp->r_statelock); 5255 while (rp->r_count > 0) { 5256 if (intr) { 5257 klwp_t *lwp = ttolwp(curthread); 5258 5259 if (lwp != NULL) 5260 lwp->lwp_nostop++; 5261 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) { 5262 if (lwp != NULL) 5263 lwp->lwp_nostop--; 5264 rc = EINTR; 5265 break; 5266 } 5267 if (lwp != NULL) 5268 lwp->lwp_nostop--; 5269 } else 5270 cv_wait(&rp->r_cv, &rp->r_statelock); 5271 } 5272 mutex_exit(&rp->r_statelock); 5273 if (rc != 0) 5274 goto done; 5275 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr); 5276 if (error) { 5277 if (error == ENOSPC || error == EDQUOT) { 5278 mutex_enter(&rp->r_statelock); 5279 if (!rp->r_error) 5280 rp->r_error = error; 5281 mutex_exit(&rp->r_statelock); 5282 } 5283 if (bfp->l_type != F_UNLCK) { 5284 rc = ENOLCK; 5285 goto done; 5286 } 5287 } 5288 } 5289 5290 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 5291 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 5292 5293 /* 5294 * Call the lock manager to do the real work of contacting 5295 * the server and obtaining the lock. 5296 */ 5297 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp); 5298 5299 if (rc == 0) 5300 nfs_lockcompletion(vp, cmd); 5301 5302 done: 5303 nfs_rw_exit(&rp->r_lkserlock); 5304 return (rc); 5305 } 5306 5307 /* 5308 * Free storage space associated with the specified vnode. The portion 5309 * to be freed is specified by bfp->l_start and bfp->l_len (already 5310 * normalized to a "whence" of 0). 5311 * 5312 * This is an experimental facility whose continued existence is not 5313 * guaranteed. Currently, we only support the special case 5314 * of l_len == 0, meaning free to end of file. 5315 */ 5316 /* ARGSUSED */ 5317 static int 5318 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5319 offset_t offset, cred_t *cr, caller_context_t *ct) 5320 { 5321 int error; 5322 5323 ASSERT(vp->v_type == VREG); 5324 if (cmd != F_FREESP) 5325 return (EINVAL); 5326 if (nfs_zone() != VTOMI(vp)->mi_zone) 5327 return (EIO); 5328 5329 error = convoff(vp, bfp, 0, offset); 5330 if (!error) { 5331 ASSERT(bfp->l_start >= 0); 5332 if (bfp->l_len == 0) { 5333 struct vattr va; 5334 5335 /* 5336 * ftruncate should not change the ctime and 5337 * mtime if we truncate the file to its 5338 * previous size. 5339 */ 5340 va.va_mask = AT_SIZE; 5341 error = nfs3getattr(vp, &va, cr); 5342 if (error || va.va_size == bfp->l_start) 5343 return (error); 5344 va.va_mask = AT_SIZE; 5345 va.va_size = bfp->l_start; 5346 error = nfs3setattr(vp, &va, 0, cr); 5347 } else 5348 error = EINVAL; 5349 } 5350 5351 return (error); 5352 } 5353 5354 /* ARGSUSED */ 5355 static int 5356 nfs3_realvp(vnode_t *vp, vnode_t **vpp) 5357 { 5358 5359 return (EINVAL); 5360 } 5361 5362 /* 5363 * Setup and add an address space callback to do the work of the delmap call. 5364 * The callback will (and must be) deleted in the actual callback function. 5365 * 5366 * This is done in order to take care of the problem that we have with holding 5367 * the address space's a_lock for a long period of time (e.g. if the NFS server 5368 * is down). Callbacks will be executed in the address space code while the 5369 * a_lock is not held. Holding the address space's a_lock causes things such 5370 * as ps and fork to hang because they are trying to acquire this lock as well. 5371 */ 5372 /* ARGSUSED */ 5373 static int 5374 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5375 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 5376 { 5377 int caller_found; 5378 int error; 5379 rnode_t *rp; 5380 nfs_delmap_args_t *dmapp; 5381 nfs_delmapcall_t *delmap_call; 5382 5383 if (vp->v_flag & VNOMAP) 5384 return (ENOSYS); 5385 /* 5386 * A process may not change zones if it has NFS pages mmap'ed 5387 * in, so we can't legitimately get here from the wrong zone. 5388 */ 5389 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5390 5391 rp = VTOR(vp); 5392 5393 /* 5394 * The way that the address space of this process deletes its mapping 5395 * of this file is via the following call chains: 5396 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5397 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5398 * 5399 * With the use of address space callbacks we are allowed to drop the 5400 * address space lock, a_lock, while executing the NFS operations that 5401 * need to go over the wire. Returning EAGAIN to the caller of this 5402 * function is what drives the execution of the callback that we add 5403 * below. The callback will be executed by the address space code 5404 * after dropping the a_lock. When the callback is finished, since 5405 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 5406 * is called again on the same segment to finish the rest of the work 5407 * that needs to happen during unmapping. 5408 * 5409 * This action of calling back into the segment driver causes 5410 * nfs3_delmap() to get called again, but since the callback was 5411 * already executed at this point, it already did the work and there 5412 * is nothing left for us to do. 5413 * 5414 * To Summarize: 5415 * - The first time nfs3_delmap is called by the current thread is when 5416 * we add the caller associated with this delmap to the delmap caller 5417 * list, add the callback, and return EAGAIN. 5418 * - The second time in this call chain when nfs3_delmap is called we 5419 * will find this caller in the delmap caller list and realize there 5420 * is no more work to do thus removing this caller from the list and 5421 * returning the error that was set in the callback execution. 5422 */ 5423 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 5424 if (caller_found) { 5425 /* 5426 * 'error' is from the actual delmap operations. To avoid 5427 * hangs, we need to handle the return of EAGAIN differently 5428 * since this is what drives the callback execution. 5429 * In this case, we don't want to return EAGAIN and do the 5430 * callback execution because there are none to execute. 5431 */ 5432 if (error == EAGAIN) 5433 return (0); 5434 else 5435 return (error); 5436 } 5437 5438 /* current caller was not in the list */ 5439 delmap_call = nfs_init_delmapcall(); 5440 5441 mutex_enter(&rp->r_statelock); 5442 list_insert_tail(&rp->r_indelmap, delmap_call); 5443 mutex_exit(&rp->r_statelock); 5444 5445 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 5446 5447 dmapp->vp = vp; 5448 dmapp->off = off; 5449 dmapp->addr = addr; 5450 dmapp->len = len; 5451 dmapp->prot = prot; 5452 dmapp->maxprot = maxprot; 5453 dmapp->flags = flags; 5454 dmapp->cr = cr; 5455 dmapp->caller = delmap_call; 5456 5457 error = as_add_callback(as, nfs3_delmap_callback, dmapp, 5458 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 5459 5460 return (error ? error : EAGAIN); 5461 } 5462 5463 /* 5464 * Remove some pages from an mmap'd vnode. Just update the 5465 * count of pages. If doing close-to-open, then flush and 5466 * commit all of the pages associated with this file. 5467 * Otherwise, start an asynchronous page flush to write out 5468 * any dirty pages. This will also associate a credential 5469 * with the rnode which can be used to write the pages. 5470 */ 5471 /* ARGSUSED */ 5472 static void 5473 nfs3_delmap_callback(struct as *as, void *arg, uint_t event) 5474 { 5475 int error; 5476 rnode_t *rp; 5477 mntinfo_t *mi; 5478 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 5479 5480 rp = VTOR(dmapp->vp); 5481 mi = VTOMI(dmapp->vp); 5482 5483 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 5484 ASSERT(rp->r_mapcnt >= 0); 5485 5486 /* 5487 * Initiate a page flush and potential commit if there are 5488 * pages, the file system was not mounted readonly, the segment 5489 * was mapped shared, and the pages themselves were writeable. 5490 */ 5491 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 5492 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 5493 mutex_enter(&rp->r_statelock); 5494 rp->r_flags |= RDIRTY; 5495 mutex_exit(&rp->r_statelock); 5496 /* 5497 * If this is a cross-zone access a sync putpage won't work, so 5498 * the best we can do is try an async putpage. That seems 5499 * better than something more draconian such as discarding the 5500 * dirty pages. 5501 */ 5502 if ((mi->mi_flags & MI_NOCTO) || 5503 nfs_zone() != mi->mi_zone) 5504 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5505 B_ASYNC, dmapp->cr); 5506 else 5507 error = nfs3_putpage_commit(dmapp->vp, dmapp->off, 5508 dmapp->len, dmapp->cr); 5509 if (!error) { 5510 mutex_enter(&rp->r_statelock); 5511 error = rp->r_error; 5512 rp->r_error = 0; 5513 mutex_exit(&rp->r_statelock); 5514 } 5515 } else 5516 error = 0; 5517 5518 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 5519 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5520 B_INVAL, dmapp->cr); 5521 5522 dmapp->caller->error = error; 5523 (void) as_delete_callback(as, arg); 5524 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 5525 } 5526 5527 static int nfs3_pathconf_disable_cache = 0; 5528 5529 #ifdef DEBUG 5530 static int nfs3_pathconf_cache_hits = 0; 5531 static int nfs3_pathconf_cache_misses = 0; 5532 #endif 5533 5534 static int 5535 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 5536 { 5537 int error; 5538 PATHCONF3args args; 5539 PATHCONF3res res; 5540 int douprintf; 5541 failinfo_t fi; 5542 rnode_t *rp; 5543 hrtime_t t; 5544 5545 if (nfs_zone() != VTOMI(vp)->mi_zone) 5546 return (EIO); 5547 /* 5548 * Large file spec - need to base answer on info stored 5549 * on original FSINFO response. 5550 */ 5551 if (cmd == _PC_FILESIZEBITS) { 5552 unsigned long long ll; 5553 long l = 1; 5554 5555 ll = VTOMI(vp)->mi_maxfilesize; 5556 5557 if (ll == 0) { 5558 *valp = 0; 5559 return (0); 5560 } 5561 5562 if (ll & 0xffffffff00000000) { 5563 l += 32; ll >>= 32; 5564 } 5565 if (ll & 0xffff0000) { 5566 l += 16; ll >>= 16; 5567 } 5568 if (ll & 0xff00) { 5569 l += 8; ll >>= 8; 5570 } 5571 if (ll & 0xf0) { 5572 l += 4; ll >>= 4; 5573 } 5574 if (ll & 0xc) { 5575 l += 2; ll >>= 2; 5576 } 5577 if (ll & 0x2) 5578 l += 2; 5579 else if (ll & 0x1) 5580 l += 1; 5581 *valp = l; 5582 return (0); 5583 } 5584 5585 if (cmd == _PC_ACL_ENABLED) { 5586 *valp = _ACL_ACLENT_ENABLED; 5587 return (0); 5588 } 5589 5590 if (cmd == _PC_XATTR_EXISTS) { 5591 error = 0; 5592 *valp = 0; 5593 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5594 vnode_t *avp; 5595 rnode_t *rp; 5596 int error = 0; 5597 mntinfo_t *mi = VTOMI(vp); 5598 5599 if (!(mi->mi_flags & MI_EXTATTR)) 5600 return (0); 5601 5602 rp = VTOR(vp); 5603 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 5604 INTR(vp))) 5605 return (EINTR); 5606 5607 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 5608 if (error || avp == NULL) 5609 error = acl_getxattrdir3(vp, &avp, 0, cr, 0); 5610 5611 nfs_rw_exit(&rp->r_rwlock); 5612 5613 if (error == 0 && avp != NULL) { 5614 VN_RELE(avp); 5615 *valp = 1; 5616 } else if (error == ENOENT) 5617 error = 0; 5618 } 5619 return (error); 5620 } 5621 5622 rp = VTOR(vp); 5623 if (rp->r_pathconf != NULL) { 5624 mutex_enter(&rp->r_statelock); 5625 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) { 5626 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf)); 5627 rp->r_pathconf = NULL; 5628 } 5629 if (rp->r_pathconf != NULL) { 5630 error = 0; 5631 switch (cmd) { 5632 case _PC_LINK_MAX: 5633 *valp = rp->r_pathconf->link_max; 5634 break; 5635 case _PC_NAME_MAX: 5636 *valp = rp->r_pathconf->name_max; 5637 break; 5638 case _PC_PATH_MAX: 5639 case _PC_SYMLINK_MAX: 5640 *valp = MAXPATHLEN; 5641 break; 5642 case _PC_CHOWN_RESTRICTED: 5643 *valp = rp->r_pathconf->chown_restricted; 5644 break; 5645 case _PC_NO_TRUNC: 5646 *valp = rp->r_pathconf->no_trunc; 5647 break; 5648 default: 5649 error = EINVAL; 5650 break; 5651 } 5652 mutex_exit(&rp->r_statelock); 5653 #ifdef DEBUG 5654 nfs3_pathconf_cache_hits++; 5655 #endif 5656 return (error); 5657 } 5658 mutex_exit(&rp->r_statelock); 5659 } 5660 #ifdef DEBUG 5661 nfs3_pathconf_cache_misses++; 5662 #endif 5663 5664 args.object = *VTOFH3(vp); 5665 fi.vp = vp; 5666 fi.fhp = (caddr_t)&args.object; 5667 fi.copyproc = nfs3copyfh; 5668 fi.lookupproc = nfs3lookup; 5669 fi.xattrdirproc = acl_getxattrdir3; 5670 5671 douprintf = 1; 5672 5673 t = gethrtime(); 5674 5675 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF, 5676 xdr_nfs_fh3, (caddr_t)&args, 5677 xdr_PATHCONF3res, (caddr_t)&res, cr, 5678 &douprintf, &res.status, 0, &fi); 5679 5680 if (error) 5681 return (error); 5682 5683 error = geterrno3(res.status); 5684 5685 if (!error) { 5686 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 5687 if (!nfs3_pathconf_disable_cache) { 5688 mutex_enter(&rp->r_statelock); 5689 if (rp->r_pathconf == NULL) { 5690 rp->r_pathconf = kmem_alloc( 5691 sizeof (*rp->r_pathconf), KM_NOSLEEP); 5692 if (rp->r_pathconf != NULL) 5693 *rp->r_pathconf = res.resok.info; 5694 } 5695 mutex_exit(&rp->r_statelock); 5696 } 5697 switch (cmd) { 5698 case _PC_LINK_MAX: 5699 *valp = res.resok.info.link_max; 5700 break; 5701 case _PC_NAME_MAX: 5702 *valp = res.resok.info.name_max; 5703 break; 5704 case _PC_PATH_MAX: 5705 case _PC_SYMLINK_MAX: 5706 *valp = MAXPATHLEN; 5707 break; 5708 case _PC_CHOWN_RESTRICTED: 5709 *valp = res.resok.info.chown_restricted; 5710 break; 5711 case _PC_NO_TRUNC: 5712 *valp = res.resok.info.no_trunc; 5713 break; 5714 default: 5715 return (EINVAL); 5716 } 5717 } else { 5718 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 5719 PURGE_STALE_FH(error, vp, cr); 5720 } 5721 5722 return (error); 5723 } 5724 5725 /* 5726 * Called by async thread to do synchronous pageio. Do the i/o, wait 5727 * for it to complete, and cleanup the page list when done. 5728 */ 5729 static int 5730 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5731 int flags, cred_t *cr) 5732 { 5733 int error; 5734 5735 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5736 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5737 if (flags & B_READ) 5738 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 5739 else 5740 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 5741 return (error); 5742 } 5743 5744 static int 5745 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5746 int flags, cred_t *cr) 5747 { 5748 int error; 5749 rnode_t *rp; 5750 5751 if (pp == NULL) 5752 return (EINVAL); 5753 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5754 return (EIO); 5755 5756 rp = VTOR(vp); 5757 mutex_enter(&rp->r_statelock); 5758 rp->r_count++; 5759 mutex_exit(&rp->r_statelock); 5760 5761 if (flags & B_ASYNC) { 5762 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 5763 nfs3_sync_pageio); 5764 } else 5765 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5766 mutex_enter(&rp->r_statelock); 5767 rp->r_count--; 5768 cv_broadcast(&rp->r_cv); 5769 mutex_exit(&rp->r_statelock); 5770 return (error); 5771 } 5772 5773 static void 5774 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr) 5775 { 5776 int error; 5777 rnode_t *rp; 5778 page_t *plist; 5779 page_t *pptr; 5780 offset3 offset; 5781 count3 len; 5782 k_sigset_t smask; 5783 5784 /* 5785 * We should get called with fl equal to either B_FREE or 5786 * B_INVAL. Any other value is illegal. 5787 * 5788 * The page that we are either supposed to free or destroy 5789 * should be exclusive locked and its io lock should not 5790 * be held. 5791 */ 5792 ASSERT(fl == B_FREE || fl == B_INVAL); 5793 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 5794 rp = VTOR(vp); 5795 5796 /* 5797 * If the page doesn't need to be committed or we shouldn't 5798 * even bother attempting to commit it, then just make sure 5799 * that the p_fsdata byte is clear and then either free or 5800 * destroy the page as appropriate. 5801 */ 5802 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) { 5803 pp->p_fsdata = C_NOCOMMIT; 5804 if (fl == B_FREE) 5805 page_free(pp, dn); 5806 else 5807 page_destroy(pp, dn); 5808 return; 5809 } 5810 5811 /* 5812 * If there is a page invalidation operation going on, then 5813 * if this is one of the pages being destroyed, then just 5814 * clear the p_fsdata byte and then either free or destroy 5815 * the page as appropriate. 5816 */ 5817 mutex_enter(&rp->r_statelock); 5818 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 5819 mutex_exit(&rp->r_statelock); 5820 pp->p_fsdata = C_NOCOMMIT; 5821 if (fl == B_FREE) 5822 page_free(pp, dn); 5823 else 5824 page_destroy(pp, dn); 5825 return; 5826 } 5827 5828 /* 5829 * If we are freeing this page and someone else is already 5830 * waiting to do a commit, then just unlock the page and 5831 * return. That other thread will take care of commiting 5832 * this page. The page can be freed sometime after the 5833 * commit has finished. Otherwise, if the page is marked 5834 * as delay commit, then we may be getting called from 5835 * pvn_write_done, one page at a time. This could result 5836 * in one commit per page, so we end up doing lots of small 5837 * commits instead of fewer larger commits. This is bad, 5838 * we want do as few commits as possible. 5839 */ 5840 if (fl == B_FREE) { 5841 if (rp->r_flags & RCOMMITWAIT) { 5842 page_unlock(pp); 5843 mutex_exit(&rp->r_statelock); 5844 return; 5845 } 5846 if (pp->p_fsdata == C_DELAYCOMMIT) { 5847 pp->p_fsdata = C_COMMIT; 5848 page_unlock(pp); 5849 mutex_exit(&rp->r_statelock); 5850 return; 5851 } 5852 } 5853 5854 /* 5855 * Check to see if there is a signal which would prevent an 5856 * attempt to commit the pages from being successful. If so, 5857 * then don't bother with all of the work to gather pages and 5858 * generate the unsuccessful RPC. Just return from here and 5859 * let the page be committed at some later time. 5860 */ 5861 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); 5862 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 5863 sigunintr(&smask); 5864 page_unlock(pp); 5865 mutex_exit(&rp->r_statelock); 5866 return; 5867 } 5868 sigunintr(&smask); 5869 5870 /* 5871 * We are starting to need to commit pages, so let's try 5872 * to commit as many as possible at once to reduce the 5873 * overhead. 5874 * 5875 * Set the `commit inprogress' state bit. We must 5876 * first wait until any current one finishes. Then 5877 * we initialize the c_pages list with this page. 5878 */ 5879 while (rp->r_flags & RCOMMIT) { 5880 rp->r_flags |= RCOMMITWAIT; 5881 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 5882 rp->r_flags &= ~RCOMMITWAIT; 5883 } 5884 rp->r_flags |= RCOMMIT; 5885 mutex_exit(&rp->r_statelock); 5886 ASSERT(rp->r_commit.c_pages == NULL); 5887 rp->r_commit.c_pages = pp; 5888 rp->r_commit.c_commbase = (offset3)pp->p_offset; 5889 rp->r_commit.c_commlen = PAGESIZE; 5890 5891 /* 5892 * Gather together all other pages which can be committed. 5893 * They will all be chained off r_commit.c_pages. 5894 */ 5895 nfs3_get_commit(vp); 5896 5897 /* 5898 * Clear the `commit inprogress' status and disconnect 5899 * the list of pages to be committed from the rnode. 5900 * At this same time, we also save the starting offset 5901 * and length of data to be committed on the server. 5902 */ 5903 plist = rp->r_commit.c_pages; 5904 rp->r_commit.c_pages = NULL; 5905 offset = rp->r_commit.c_commbase; 5906 len = rp->r_commit.c_commlen; 5907 mutex_enter(&rp->r_statelock); 5908 rp->r_flags &= ~RCOMMIT; 5909 cv_broadcast(&rp->r_commit.c_cv); 5910 mutex_exit(&rp->r_statelock); 5911 5912 if (curproc == proc_pageout || curproc == proc_fsflush || 5913 nfs_zone() != VTOMI(vp)->mi_zone) { 5914 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit); 5915 return; 5916 } 5917 5918 /* 5919 * Actually generate the COMMIT3 over the wire operation. 5920 */ 5921 error = nfs3_commit(vp, offset, len, cr); 5922 5923 /* 5924 * If we got an error during the commit, just unlock all 5925 * of the pages. The pages will get retransmitted to the 5926 * server during a putpage operation. 5927 */ 5928 if (error) { 5929 while (plist != NULL) { 5930 pptr = plist; 5931 page_sub(&plist, pptr); 5932 page_unlock(pptr); 5933 } 5934 return; 5935 } 5936 5937 /* 5938 * We've tried as hard as we can to commit the data to stable 5939 * storage on the server. We release the rest of the pages 5940 * and clear the commit required state. They will be put 5941 * onto the tail of the cachelist if they are nolonger 5942 * mapped. 5943 */ 5944 while (plist != pp) { 5945 pptr = plist; 5946 page_sub(&plist, pptr); 5947 pptr->p_fsdata = C_NOCOMMIT; 5948 (void) page_release(pptr, 1); 5949 } 5950 5951 /* 5952 * It is possible that nfs3_commit didn't return error but 5953 * some other thread has modified the page we are going 5954 * to free/destroy. 5955 * In this case we need to rewrite the page. Do an explicit check 5956 * before attempting to free/destroy the page. If modified, needs to 5957 * be rewritten so unlock the page and return. 5958 */ 5959 if (hat_ismod(pp)) { 5960 pp->p_fsdata = C_NOCOMMIT; 5961 page_unlock(pp); 5962 return; 5963 } 5964 5965 /* 5966 * Now, as appropriate, either free or destroy the page 5967 * that we were called with. 5968 */ 5969 pp->p_fsdata = C_NOCOMMIT; 5970 if (fl == B_FREE) 5971 page_free(pp, dn); 5972 else 5973 page_destroy(pp, dn); 5974 } 5975 5976 static int 5977 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr) 5978 { 5979 int error; 5980 rnode_t *rp; 5981 COMMIT3args args; 5982 COMMIT3res res; 5983 int douprintf; 5984 cred_t *cred; 5985 5986 rp = VTOR(vp); 5987 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5988 5989 mutex_enter(&rp->r_statelock); 5990 if (rp->r_cred != NULL) { 5991 cred = rp->r_cred; 5992 crhold(cred); 5993 } else { 5994 rp->r_cred = cr; 5995 crhold(cr); 5996 cred = cr; 5997 crhold(cred); 5998 } 5999 mutex_exit(&rp->r_statelock); 6000 6001 args.file = *VTOFH3(vp); 6002 args.offset = offset; 6003 args.count = count; 6004 6005 doitagain: 6006 douprintf = 1; 6007 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT, 6008 xdr_COMMIT3args, (caddr_t)&args, 6009 xdr_COMMIT3res, (caddr_t)&res, cred, 6010 &douprintf, &res.status, 0, NULL); 6011 6012 crfree(cred); 6013 6014 if (error) 6015 return (error); 6016 6017 error = geterrno3(res.status); 6018 if (!error) { 6019 ASSERT(rp->r_flags & RHAVEVERF); 6020 mutex_enter(&rp->r_statelock); 6021 if (rp->r_verf == res.resok.verf) { 6022 mutex_exit(&rp->r_statelock); 6023 return (0); 6024 } 6025 nfs3_set_mod(vp); 6026 rp->r_verf = res.resok.verf; 6027 mutex_exit(&rp->r_statelock); 6028 error = NFS_VERF_MISMATCH; 6029 } else { 6030 if (error == EACCES) { 6031 mutex_enter(&rp->r_statelock); 6032 if (cred != cr) { 6033 if (rp->r_cred != NULL) 6034 crfree(rp->r_cred); 6035 rp->r_cred = cr; 6036 crhold(cr); 6037 cred = cr; 6038 crhold(cred); 6039 mutex_exit(&rp->r_statelock); 6040 goto doitagain; 6041 } 6042 mutex_exit(&rp->r_statelock); 6043 } 6044 /* 6045 * Can't do a PURGE_STALE_FH here because this 6046 * can cause a deadlock. nfs3_commit can 6047 * be called from nfs3_dispose which can be called 6048 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH 6049 * can call back to pvn_vplist_dirty. 6050 */ 6051 if (error == ESTALE) { 6052 mutex_enter(&rp->r_statelock); 6053 rp->r_flags |= RSTALE; 6054 if (!rp->r_error) 6055 rp->r_error = error; 6056 mutex_exit(&rp->r_statelock); 6057 PURGE_ATTRCACHE(vp); 6058 } else { 6059 mutex_enter(&rp->r_statelock); 6060 if (!rp->r_error) 6061 rp->r_error = error; 6062 mutex_exit(&rp->r_statelock); 6063 } 6064 } 6065 6066 return (error); 6067 } 6068 6069 static void 6070 nfs3_set_mod(vnode_t *vp) 6071 { 6072 page_t *pp; 6073 kmutex_t *vphm; 6074 6075 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6076 vphm = page_vnode_mutex(vp); 6077 mutex_enter(vphm); 6078 if ((pp = vp->v_pages) != NULL) { 6079 do { 6080 if (pp->p_fsdata != C_NOCOMMIT) { 6081 hat_setmod(pp); 6082 pp->p_fsdata = C_NOCOMMIT; 6083 } 6084 } while ((pp = pp->p_vpnext) != vp->v_pages); 6085 } 6086 mutex_exit(vphm); 6087 } 6088 6089 6090 /* 6091 * This routine is used to gather together a page list of the pages 6092 * which are to be committed on the server. This routine must not 6093 * be called if the calling thread holds any locked pages. 6094 * 6095 * The calling thread must have set RCOMMIT. This bit is used to 6096 * serialize access to the commit structure in the rnode. As long 6097 * as the thread has set RCOMMIT, then it can manipulate the commit 6098 * structure without requiring any other locks. 6099 */ 6100 static void 6101 nfs3_get_commit(vnode_t *vp) 6102 { 6103 rnode_t *rp; 6104 page_t *pp; 6105 kmutex_t *vphm; 6106 6107 rp = VTOR(vp); 6108 6109 ASSERT(rp->r_flags & RCOMMIT); 6110 6111 vphm = page_vnode_mutex(vp); 6112 mutex_enter(vphm); 6113 6114 /* 6115 * If there are no pages associated with this vnode, then 6116 * just return. 6117 */ 6118 if ((pp = vp->v_pages) == NULL) { 6119 mutex_exit(vphm); 6120 return; 6121 } 6122 6123 /* 6124 * Step through all of the pages associated with this vnode 6125 * looking for pages which need to be committed. 6126 */ 6127 do { 6128 /* 6129 * If this page does not need to be committed or is 6130 * modified, then just skip it. 6131 */ 6132 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 6133 continue; 6134 6135 /* 6136 * Attempt to lock the page. If we can't, then 6137 * someone else is messing with it and we will 6138 * just skip it. 6139 */ 6140 if (!page_trylock(pp, SE_EXCL)) 6141 continue; 6142 6143 /* 6144 * If this page does not need to be committed or is 6145 * modified, then just skip it. Recheck now that 6146 * the page is locked. 6147 */ 6148 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6149 page_unlock(pp); 6150 continue; 6151 } 6152 6153 if (PP_ISFREE(pp)) { 6154 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free", 6155 (void *)pp); 6156 } 6157 6158 /* 6159 * The page needs to be committed and we locked it. 6160 * Update the base and length parameters and add it 6161 * to r_pages. 6162 */ 6163 if (rp->r_commit.c_pages == NULL) { 6164 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6165 rp->r_commit.c_commlen = PAGESIZE; 6166 } else if (pp->p_offset < rp->r_commit.c_commbase) { 6167 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 6168 (offset3)pp->p_offset + rp->r_commit.c_commlen; 6169 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6170 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 6171 <= pp->p_offset) { 6172 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6173 rp->r_commit.c_commbase + PAGESIZE; 6174 } 6175 page_add(&rp->r_commit.c_pages, pp); 6176 } while ((pp = pp->p_vpnext) != vp->v_pages); 6177 6178 mutex_exit(vphm); 6179 } 6180 6181 /* 6182 * This routine is used to gather together a page list of the pages 6183 * which are to be committed on the server. This routine must not 6184 * be called if the calling thread holds any locked pages. 6185 * 6186 * The calling thread must have set RCOMMIT. This bit is used to 6187 * serialize access to the commit structure in the rnode. As long 6188 * as the thread has set RCOMMIT, then it can manipulate the commit 6189 * structure without requiring any other locks. 6190 */ 6191 static void 6192 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 6193 { 6194 6195 rnode_t *rp; 6196 page_t *pp; 6197 u_offset_t end; 6198 u_offset_t off; 6199 6200 ASSERT(len != 0); 6201 6202 rp = VTOR(vp); 6203 6204 ASSERT(rp->r_flags & RCOMMIT); 6205 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6206 6207 /* 6208 * If there are no pages associated with this vnode, then 6209 * just return. 6210 */ 6211 if ((pp = vp->v_pages) == NULL) 6212 return; 6213 6214 /* 6215 * Calculate the ending offset. 6216 */ 6217 end = soff + len; 6218 6219 for (off = soff; off < end; off += PAGESIZE) { 6220 /* 6221 * Lookup each page by vp, offset. 6222 */ 6223 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 6224 continue; 6225 6226 /* 6227 * If this page does not need to be committed or is 6228 * modified, then just skip it. 6229 */ 6230 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6231 page_unlock(pp); 6232 continue; 6233 } 6234 6235 ASSERT(PP_ISFREE(pp) == 0); 6236 6237 /* 6238 * The page needs to be committed and we locked it. 6239 * Update the base and length parameters and add it 6240 * to r_pages. 6241 */ 6242 if (rp->r_commit.c_pages == NULL) { 6243 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6244 rp->r_commit.c_commlen = PAGESIZE; 6245 } else { 6246 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6247 rp->r_commit.c_commbase + PAGESIZE; 6248 } 6249 page_add(&rp->r_commit.c_pages, pp); 6250 } 6251 } 6252 6253 #if 0 /* unused */ 6254 #ifdef DEBUG 6255 static int 6256 nfs3_no_uncommitted_pages(vnode_t *vp) 6257 { 6258 page_t *pp; 6259 kmutex_t *vphm; 6260 6261 vphm = page_vnode_mutex(vp); 6262 mutex_enter(vphm); 6263 if ((pp = vp->v_pages) != NULL) { 6264 do { 6265 if (pp->p_fsdata != C_NOCOMMIT) { 6266 mutex_exit(vphm); 6267 return (0); 6268 } 6269 } while ((pp = pp->p_vpnext) != vp->v_pages); 6270 } 6271 mutex_exit(vphm); 6272 6273 return (1); 6274 } 6275 #endif 6276 #endif 6277 6278 static int 6279 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 6280 { 6281 int error; 6282 writeverf3 write_verf; 6283 rnode_t *rp = VTOR(vp); 6284 6285 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6286 /* 6287 * Flush the data portion of the file and then commit any 6288 * portions which need to be committed. This may need to 6289 * be done twice if the server has changed state since 6290 * data was last written. The data will need to be 6291 * rewritten to the server and then a new commit done. 6292 * 6293 * In fact, this may need to be done several times if the 6294 * server is having problems and crashing while we are 6295 * attempting to do this. 6296 */ 6297 6298 top: 6299 /* 6300 * Do a flush based on the poff and plen arguments. This 6301 * will asynchronously write out any modified pages in the 6302 * range specified by (poff, plen). This starts all of the 6303 * i/o operations which will be waited for in the next 6304 * call to nfs3_putpage 6305 */ 6306 6307 mutex_enter(&rp->r_statelock); 6308 write_verf = rp->r_verf; 6309 mutex_exit(&rp->r_statelock); 6310 6311 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr); 6312 if (error == EAGAIN) 6313 error = 0; 6314 6315 /* 6316 * Do a flush based on the poff and plen arguments. This 6317 * will synchronously write out any modified pages in the 6318 * range specified by (poff, plen) and wait until all of 6319 * the asynchronous i/o's in that range are done as well. 6320 */ 6321 if (!error) 6322 error = nfs3_putpage(vp, poff, plen, 0, cr); 6323 6324 if (error) 6325 return (error); 6326 6327 mutex_enter(&rp->r_statelock); 6328 if (rp->r_verf != write_verf) { 6329 mutex_exit(&rp->r_statelock); 6330 goto top; 6331 } 6332 mutex_exit(&rp->r_statelock); 6333 6334 /* 6335 * Now commit any pages which might need to be committed. 6336 * If the error, NFS_VERF_MISMATCH, is returned, then 6337 * start over with the flush operation. 6338 */ 6339 6340 error = nfs3_commit_vp(vp, poff, plen, cr); 6341 6342 if (error == NFS_VERF_MISMATCH) 6343 goto top; 6344 6345 return (error); 6346 } 6347 6348 static int 6349 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr) 6350 { 6351 rnode_t *rp; 6352 page_t *plist; 6353 offset3 offset; 6354 count3 len; 6355 6356 6357 rp = VTOR(vp); 6358 6359 if (nfs_zone() != VTOMI(vp)->mi_zone) 6360 return (EIO); 6361 /* 6362 * Set the `commit inprogress' state bit. We must 6363 * first wait until any current one finishes. 6364 */ 6365 mutex_enter(&rp->r_statelock); 6366 while (rp->r_flags & RCOMMIT) { 6367 rp->r_flags |= RCOMMITWAIT; 6368 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6369 rp->r_flags &= ~RCOMMITWAIT; 6370 } 6371 rp->r_flags |= RCOMMIT; 6372 mutex_exit(&rp->r_statelock); 6373 6374 /* 6375 * Gather together all of the pages which need to be 6376 * committed. 6377 */ 6378 if (plen == 0) 6379 nfs3_get_commit(vp); 6380 else 6381 nfs3_get_commit_range(vp, poff, plen); 6382 6383 /* 6384 * Clear the `commit inprogress' bit and disconnect the 6385 * page list which was gathered together in nfs3_get_commit. 6386 */ 6387 plist = rp->r_commit.c_pages; 6388 rp->r_commit.c_pages = NULL; 6389 offset = rp->r_commit.c_commbase; 6390 len = rp->r_commit.c_commlen; 6391 mutex_enter(&rp->r_statelock); 6392 rp->r_flags &= ~RCOMMIT; 6393 cv_broadcast(&rp->r_commit.c_cv); 6394 mutex_exit(&rp->r_statelock); 6395 6396 /* 6397 * If any pages need to be committed, commit them and 6398 * then unlock them so that they can be freed some 6399 * time later. 6400 */ 6401 if (plist != NULL) { 6402 /* 6403 * No error occurred during the flush portion 6404 * of this operation, so now attempt to commit 6405 * the data to stable storage on the server. 6406 * 6407 * This will unlock all of the pages on the list. 6408 */ 6409 return (nfs3_sync_commit(vp, plist, offset, len, cr)); 6410 } 6411 return (0); 6412 } 6413 6414 static int 6415 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6416 cred_t *cr) 6417 { 6418 int error; 6419 page_t *pp; 6420 6421 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6422 error = nfs3_commit(vp, offset, count, cr); 6423 6424 /* 6425 * If we got an error, then just unlock all of the pages 6426 * on the list. 6427 */ 6428 if (error) { 6429 while (plist != NULL) { 6430 pp = plist; 6431 page_sub(&plist, pp); 6432 page_unlock(pp); 6433 } 6434 return (error); 6435 } 6436 /* 6437 * We've tried as hard as we can to commit the data to stable 6438 * storage on the server. We just unlock the pages and clear 6439 * the commit required state. They will get freed later. 6440 */ 6441 while (plist != NULL) { 6442 pp = plist; 6443 page_sub(&plist, pp); 6444 pp->p_fsdata = C_NOCOMMIT; 6445 page_unlock(pp); 6446 } 6447 6448 return (error); 6449 } 6450 6451 static void 6452 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6453 cred_t *cr) 6454 { 6455 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6456 (void) nfs3_sync_commit(vp, plist, offset, count, cr); 6457 } 6458 6459 static int 6460 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 6461 { 6462 int error; 6463 mntinfo_t *mi; 6464 6465 mi = VTOMI(vp); 6466 6467 if (nfs_zone() != mi->mi_zone) 6468 return (EIO); 6469 6470 if (mi->mi_flags & MI_ACL) { 6471 error = acl_setacl3(vp, vsecattr, flag, cr); 6472 if (mi->mi_flags & MI_ACL) 6473 return (error); 6474 } 6475 6476 return (ENOSYS); 6477 } 6478 6479 static int 6480 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 6481 { 6482 int error; 6483 mntinfo_t *mi; 6484 6485 mi = VTOMI(vp); 6486 6487 if (nfs_zone() != mi->mi_zone) 6488 return (EIO); 6489 6490 if (mi->mi_flags & MI_ACL) { 6491 error = acl_getacl3(vp, vsecattr, flag, cr); 6492 if (mi->mi_flags & MI_ACL) 6493 return (error); 6494 } 6495 6496 return (fs_fab_acl(vp, vsecattr, flag, cr)); 6497 } 6498 6499 static int 6500 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr) 6501 { 6502 int error; 6503 struct shrlock nshr; 6504 struct nfs_owner nfs_owner; 6505 netobj lm_fh3; 6506 6507 if (nfs_zone() != VTOMI(vp)->mi_zone) 6508 return (EIO); 6509 6510 /* 6511 * check for valid cmd parameter 6512 */ 6513 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 6514 return (EINVAL); 6515 6516 /* 6517 * Check access permissions 6518 */ 6519 if (cmd == F_SHARE && 6520 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 6521 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 6522 return (EBADF); 6523 6524 /* 6525 * If the filesystem is mounted using local locking, pass the 6526 * request off to the local share code. 6527 */ 6528 if (VTOMI(vp)->mi_flags & MI_LLOCK) 6529 return (fs_shrlock(vp, cmd, shr, flag, cr)); 6530 6531 switch (cmd) { 6532 case F_SHARE: 6533 case F_UNSHARE: 6534 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 6535 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 6536 6537 /* 6538 * If passed an owner that is too large to fit in an 6539 * nfs_owner it is likely a recursive call from the 6540 * lock manager client and pass it straight through. If 6541 * it is not a nfs_owner then simply return an error. 6542 */ 6543 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 6544 if (((struct nfs_owner *)shr->s_owner)->magic != 6545 NFS_OWNER_MAGIC) 6546 return (EINVAL); 6547 6548 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) { 6549 error = set_errno(error); 6550 } 6551 return (error); 6552 } 6553 /* 6554 * Remote share reservations owner is a combination of 6555 * a magic number, hostname, and the local owner 6556 */ 6557 bzero(&nfs_owner, sizeof (nfs_owner)); 6558 nfs_owner.magic = NFS_OWNER_MAGIC; 6559 (void) strncpy(nfs_owner.hname, uts_nodename(), 6560 sizeof (nfs_owner.hname)); 6561 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 6562 nshr.s_access = shr->s_access; 6563 nshr.s_deny = shr->s_deny; 6564 nshr.s_sysid = 0; 6565 nshr.s_pid = ttoproc(curthread)->p_pid; 6566 nshr.s_own_len = sizeof (nfs_owner); 6567 nshr.s_owner = (caddr_t)&nfs_owner; 6568 6569 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) { 6570 error = set_errno(error); 6571 } 6572 6573 break; 6574 6575 case F_HASREMOTELOCKS: 6576 /* 6577 * NFS client can't store remote locks itself 6578 */ 6579 shr->s_access = 0; 6580 error = 0; 6581 break; 6582 6583 default: 6584 error = EINVAL; 6585 break; 6586 } 6587 6588 return (error); 6589 }--- EOF ---