Old nfs3_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
29 * All rights reserved.
30 */
31
32 #pragma ident "@(#)nfs3_vnops.c 1.272 05/10/11 SMI"
33
34 #include <sys/param.h>
35 #include <sys/types.h>
36 #include <sys/systm.h>
37 #include <sys/cred.h>
38 #include <sys/time.h>
39 #include <sys/vnode.h>
40 #include <sys/vfs.h>
41 #include <sys/file.h>
42 #include <sys/filio.h>
43 #include <sys/uio.h>
44 #include <sys/buf.h>
45 #include <sys/mman.h>
46 #include <sys/pathname.h>
47 #include <sys/dirent.h>
48 #include <sys/debug.h>
49 #include <sys/vmsystm.h>
50 #include <sys/fcntl.h>
51 #include <sys/flock.h>
52 #include <sys/swap.h>
53 #include <sys/errno.h>
54 #include <sys/strsubr.h>
55 #include <sys/sysmacros.h>
56 #include <sys/kmem.h>
57 #include <sys/cmn_err.h>
58 #include <sys/pathconf.h>
59 #include <sys/utsname.h>
60 #include <sys/dnlc.h>
61 #include <sys/acl.h>
62 #include <sys/systeminfo.h>
63 #include <sys/atomic.h>
64 #include <sys/policy.h>
65 #include <sys/sdt.h>
66
67 #include <rpc/types.h>
68 #include <rpc/auth.h>
69 #include <rpc/clnt.h>
70
71 #include <nfs/nfs.h>
72 #include <nfs/nfs_clnt.h>
73 #include <nfs/rnode.h>
74 #include <nfs/nfs_acl.h>
75 #include <nfs/lm.h>
76
77 #include <vm/hat.h>
78 #include <vm/as.h>
79 #include <vm/page.h>
80 #include <vm/pvn.h>
81 #include <vm/seg.h>
82 #include <vm/seg_map.h>
83 #include <vm/seg_kpm.h>
84 #include <vm/seg_vn.h>
85
86 #include <fs/fs_subr.h>
87
88 #include <sys/ddi.h>
89
90 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
91 cred_t *);
92 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
93 stable_how *);
94 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *);
95 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *);
96 static int nfs3_accessx(void *, int, cred_t *);
97 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *);
98 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int);
99 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl,
100 int, vnode_t **, cred_t *, int);
101 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *);
102 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
103 int, vnode_t **, cred_t *);
104 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *);
105 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
106 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
107 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *);
108 static int nfs3_bio(struct buf *, stable_how *, cred_t *);
109 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
110 page_t *[], size_t, struct seg *, caddr_t,
111 enum seg_rw, cred_t *);
112 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
113 cred_t *);
114 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
115 int, cred_t *);
116 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
117 int, cred_t *);
118 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *);
119 static void nfs3_set_mod(vnode_t *);
120 static void nfs3_get_commit(vnode_t *);
121 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t);
122 #if 0 /* unused */
123 #ifdef DEBUG
124 static int nfs3_no_uncommitted_pages(vnode_t *);
125 #endif
126 #endif /* unused */
127 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
128 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *);
129 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3,
130 cred_t *);
131 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3,
132 cred_t *);
133 static void nfs3_delmap_callback(struct as *, void *, uint_t);
134
135 /*
136 * Error flags used to pass information about certain special errors
137 * which need to be handled specially.
138 */
139 #define NFS_EOF -98
140 #define NFS_VERF_MISMATCH -97
141
142 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
143 #define ALIGN64(x, ptr, sz) \
144 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
145 if (x) { \
146 x = sizeof (uint64_t) - (x); \
147 sz -= (x); \
148 ptr += (x); \
149 }
150
151 /*
152 * These are the vnode ops routines which implement the vnode interface to
153 * the networked file system. These routines just take their parameters,
154 * make them look networkish by putting the right info into interface structs,
155 * and then calling the appropriate remote routine(s) to do the work.
156 *
157 * Note on directory name lookup cacheing: If we detect a stale fhandle,
158 * we purge the directory cache relative to that vnode. This way, the
159 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for
160 * more details on rnode locking.
161 */
162
163 static int nfs3_open(vnode_t **, int, cred_t *);
164 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *);
165 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *,
166 caller_context_t *);
167 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *,
168 caller_context_t *);
169 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *);
170 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *);
171 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *,
172 caller_context_t *);
173 static int nfs3_access(vnode_t *, int, int, cred_t *);
174 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *);
175 static int nfs3_fsync(vnode_t *, int, cred_t *);
176 static void nfs3_inactive(vnode_t *, cred_t *);
177 static int nfs3_lookup(vnode_t *, char *, vnode_t **,
178 struct pathname *, int, vnode_t *, cred_t *);
179 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl,
180 int, vnode_t **, cred_t *, int);
181 static int nfs3_remove(vnode_t *, char *, cred_t *);
182 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *);
183 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *);
184 static int nfs3_mkdir(vnode_t *, char *, struct vattr *,
185 vnode_t **, cred_t *);
186 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *);
187 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *,
188 cred_t *);
189 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *);
190 static int nfs3_fid(vnode_t *, fid_t *);
191 static int nfs3_rwlock(vnode_t *, int, caller_context_t *);
192 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *);
193 static int nfs3_seek(vnode_t *, offset_t, offset_t *);
194 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *,
195 page_t *[], size_t, struct seg *, caddr_t,
196 enum seg_rw, cred_t *);
197 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *);
198 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *,
199 size_t, uchar_t, uchar_t, uint_t, cred_t *);
200 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t,
201 size_t, uchar_t, uchar_t, uint_t, cred_t *);
202 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
203 struct flk_callback *, cred_t *);
204 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t,
205 cred_t *, caller_context_t *);
206 static int nfs3_realvp(vnode_t *, vnode_t **);
207 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t,
208 size_t, uint_t, uint_t, uint_t, cred_t *);
209 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *);
210 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
211 cred_t *);
212 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *);
213 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *);
214 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *);
215 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *);
216
217 struct vnodeops *nfs3_vnodeops;
218
219 const fs_operation_def_t nfs3_vnodeops_template[] = {
220 VOPNAME_OPEN, nfs3_open,
221 VOPNAME_CLOSE, nfs3_close,
222 VOPNAME_READ, nfs3_read,
223 VOPNAME_WRITE, nfs3_write,
224 VOPNAME_IOCTL, nfs3_ioctl,
225 VOPNAME_GETATTR, nfs3_getattr,
226 VOPNAME_SETATTR, nfs3_setattr,
227 VOPNAME_ACCESS, nfs3_access,
228 VOPNAME_LOOKUP, nfs3_lookup,
229 VOPNAME_CREATE, nfs3_create,
230 VOPNAME_REMOVE, nfs3_remove,
231 VOPNAME_LINK, nfs3_link,
232 VOPNAME_RENAME, nfs3_rename,
233 VOPNAME_MKDIR, nfs3_mkdir,
234 VOPNAME_RMDIR, nfs3_rmdir,
235 VOPNAME_READDIR, nfs3_readdir,
236 VOPNAME_SYMLINK, nfs3_symlink,
237 VOPNAME_READLINK, nfs3_readlink,
238 VOPNAME_FSYNC, nfs3_fsync,
239 VOPNAME_INACTIVE, (fs_generic_func_p) nfs3_inactive,
240 VOPNAME_FID, nfs3_fid,
241 VOPNAME_RWLOCK, nfs3_rwlock,
242 VOPNAME_RWUNLOCK, (fs_generic_func_p) nfs3_rwunlock,
243 VOPNAME_SEEK, nfs3_seek,
244 VOPNAME_FRLOCK, nfs3_frlock,
245 VOPNAME_SPACE, nfs3_space,
246 VOPNAME_REALVP, nfs3_realvp,
247 VOPNAME_GETPAGE, nfs3_getpage,
248 VOPNAME_PUTPAGE, nfs3_putpage,
249 VOPNAME_MAP, (fs_generic_func_p) nfs3_map,
250 VOPNAME_ADDMAP, (fs_generic_func_p) nfs3_addmap,
251 VOPNAME_DELMAP, nfs3_delmap,
252 VOPNAME_DUMP, nfs_dump, /* there is no separate nfs3_dump */
253 VOPNAME_PATHCONF, nfs3_pathconf,
254 VOPNAME_PAGEIO, nfs3_pageio,
255 VOPNAME_DISPOSE, (fs_generic_func_p) nfs3_dispose,
256 VOPNAME_SETSECATTR, nfs3_setsecattr,
257 VOPNAME_GETSECATTR, nfs3_getsecattr,
258 VOPNAME_SHRLOCK, nfs3_shrlock,
259 NULL, NULL
260 };
261
262 /*
263 * XXX: This is referenced in modstubs.s
264 */
265 struct vnodeops *
266 nfs3_getvnodeops(void)
267 {
268 return (nfs3_vnodeops);
269 }
270
271 /* ARGSUSED */
272 static int
273 nfs3_open(vnode_t **vpp, int flag, cred_t *cr)
274 {
275 int error;
276 struct vattr va;
277 rnode_t *rp;
278 vnode_t *vp;
279
280 vp = *vpp;
281 if (nfs_zone() != VTOMI(vp)->mi_zone)
282 return (EIO);
283 rp = VTOR(vp);
284 mutex_enter(&rp->r_statelock);
285 if (rp->r_cred == NULL) {
286 crhold(cr);
287 rp->r_cred = cr;
288 }
289 mutex_exit(&rp->r_statelock);
290
291 /*
292 * If there is no cached data or if close-to-open
293 * consistency checking is turned off, we can avoid
294 * the over the wire getattr. Otherwise, if the
295 * file system is mounted readonly, then just verify
296 * the caches are up to date using the normal mechanism.
297 * Else, if the file is not mmap'd, then just mark
298 * the attributes as timed out. They will be refreshed
299 * and the caches validated prior to being used.
300 * Else, the file system is mounted writeable so
301 * force an over the wire GETATTR in order to ensure
302 * that all cached data is valid.
303 */
304 if (vp->v_count > 1 ||
305 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) &&
306 !(VTOMI(vp)->mi_flags & MI_NOCTO))) {
307 if (vn_is_readonly(vp))
308 error = nfs3_validate_caches(vp, cr);
309 else if (rp->r_mapcnt == 0 && vp->v_count == 1) {
310 PURGE_ATTRCACHE(vp);
311 error = 0;
312 } else {
313 va.va_mask = AT_ALL;
314 error = nfs3_getattr_otw(vp, &va, cr);
315 }
316 } else
317 error = 0;
318
319 return (error);
320 }
321
322 static int
323 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr)
324 {
325 rnode_t *rp;
326 int error;
327 struct vattr va;
328
329 /*
330 * zone_enter(2) prevents processes from changing zones with NFS files
331 * open; if we happen to get here from the wrong zone we can't do
332 * anything over the wire.
333 */
334 if (VTOMI(vp)->mi_zone != nfs_zone()) {
335 /*
336 * We could attempt to clean up locks, except we're sure
337 * that the current process didn't acquire any locks on
338 * the file: any attempt to lock a file belong to another zone
339 * will fail, and one can't lock an NFS file and then change
340 * zones, as that fails too.
341 *
342 * Returning an error here is the sane thing to do. A
343 * subsequent call to VN_RELE() which translates to a
344 * nfs3_inactive() will clean up state: if the zone of the
345 * vnode's origin is still alive and kicking, an async worker
346 * thread will handle the request (from the correct zone), and
347 * everything (minus the commit and final nfs3_getattr_otw()
348 * call) should be OK. If the zone is going away
349 * nfs_async_inactive() will throw away cached pages inline.
350 */
351 return (EIO);
352 }
353
354 /*
355 * If we are using local locking for this filesystem, then
356 * release all of the SYSV style record locks. Otherwise,
357 * we are doing network locking and we need to release all
358 * of the network locks. All of the locks held by this
359 * process on this file are released no matter what the
360 * incoming reference count is.
361 */
362 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
363 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
364 cleanshares(vp, ttoproc(curthread)->p_pid);
365 } else
366 nfs_lockrelease(vp, flag, offset, cr);
367
368 if (count > 1)
369 return (0);
370
371 /*
372 * If the file has been `unlinked', then purge the
373 * DNLC so that this vnode will get reycled quicker
374 * and the .nfs* file on the server will get removed.
375 */
376 rp = VTOR(vp);
377 if (rp->r_unldvp != NULL)
378 dnlc_purge_vp(vp);
379
380 /*
381 * If the file was open for write and there are pages,
382 * then if the file system was mounted using the "no-close-
383 * to-open" semantics, then start an asynchronous flush
384 * of the all of the pages in the file.
385 * else the file system was not mounted using the "no-close-
386 * to-open" semantics, then do a synchronous flush and
387 * commit of all of the dirty and uncommitted pages.
388 *
389 * The asynchronous flush of the pages in the "nocto" path
390 * mostly just associates a cred pointer with the rnode so
391 * writes which happen later will have a better chance of
392 * working. It also starts the data being written to the
393 * server, but without unnecessarily delaying the application.
394 */
395 if ((flag & FWRITE) && vn_has_cached_data(vp)) {
396 if (VTOMI(vp)->mi_flags & MI_NOCTO) {
397 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC, cr);
398 if (error == EAGAIN)
399 error = 0;
400 } else
401 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
402 if (!error) {
403 mutex_enter(&rp->r_statelock);
404 error = rp->r_error;
405 rp->r_error = 0;
406 mutex_exit(&rp->r_statelock);
407 }
408 } else {
409 mutex_enter(&rp->r_statelock);
410 error = rp->r_error;
411 rp->r_error = 0;
412 mutex_exit(&rp->r_statelock);
413 }
414
415 /*
416 * If RWRITEATTR is set, then issue an over the wire GETATTR to
417 * refresh the attribute cache with a set of attributes which
418 * weren't returned from a WRITE. This will enable the close-
419 * to-open processing to work.
420 */
421 if (rp->r_flags & RWRITEATTR)
422 (void) nfs3_getattr_otw(vp, &va, cr);
423
424 return (error);
425 }
426
427 /* ARGSUSED */
428 static int
429 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr)
430 {
431 mntinfo_t *mi;
432 READ3args args;
433 READ3uiores res;
434 int tsize;
435 offset_t offset;
436 ssize_t count;
437 int error;
438 int douprintf;
439 failinfo_t fi;
440 char *sv_hostname;
441
442 mi = VTOMI(vp);
443 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
444 sv_hostname = VTOR(vp)->r_server->sv_hostname;
445
446 douprintf = 1;
447 args.file = *VTOFH3(vp);
448 fi.vp = vp;
449 fi.fhp = (caddr_t)&args.file;
450 fi.copyproc = nfs3copyfh;
451 fi.lookupproc = nfs3lookup;
452 fi.xattrdirproc = acl_getxattrdir3;
453
454 res.uiop = uiop;
455
456 offset = uiop->uio_loffset;
457 count = uiop->uio_resid;
458
459 do {
460 if (mi->mi_io_kstats) {
461 mutex_enter(&mi->mi_lock);
462 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
463 mutex_exit(&mi->mi_lock);
464 }
465
466 do {
467 tsize = MIN(mi->mi_tsize, count);
468 args.offset = (offset3)offset;
469 args.count = (count3)tsize;
470 res.size = (uint_t)tsize;
471 error = rfs3call(mi, NFSPROC3_READ,
472 xdr_READ3args, (caddr_t)&args,
473 xdr_READ3uiores, (caddr_t)&res, cr,
474 &douprintf, &res.status, 0, &fi);
475 } while (error == ENFS_TRYAGAIN);
476
477 if (mi->mi_io_kstats) {
478 mutex_enter(&mi->mi_lock);
479 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
480 mutex_exit(&mi->mi_lock);
481 }
482
483 if (error)
484 return (error);
485
486 error = geterrno3(res.status);
487 if (error)
488 return (error);
489
490 if (res.count != res.size) {
491 zcmn_err(getzoneid(), CE_WARN,
492 "nfs3_directio_read: server %s returned incorrect amount",
493 sv_hostname);
494 return (EIO);
495 }
496 count -= res.count;
497 offset += res.count;
498 if (mi->mi_io_kstats) {
499 mutex_enter(&mi->mi_lock);
500 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
501 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
502 mutex_exit(&mi->mi_lock);
503 }
504 lwp_stat_update(LWP_STAT_INBLK, 1);
505 } while (count && !res.eof);
506
507 return (0);
508 }
509
510 /* ARGSUSED */
511 static int
512 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
513 caller_context_t *ct)
514 {
515 rnode_t *rp;
516 u_offset_t off;
517 offset_t diff;
518 int on;
519 size_t n;
520 caddr_t base;
521 uint_t flags;
522 int error = 0;
523 mntinfo_t *mi;
524
525 rp = VTOR(vp);
526 mi = VTOMI(vp);
527
528 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
529
530 if (nfs_zone() != mi->mi_zone)
531 return (EIO);
532
533 if (vp->v_type != VREG)
534 return (EISDIR);
535
536 if (uiop->uio_resid == 0)
537 return (0);
538
539 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
540 return (EINVAL);
541
542 /*
543 * Bypass VM if caching has been disabled (e.g., locking) or if
544 * using client-side direct I/O and the file is not mmap'd and
545 * there are no cached pages.
546 */
547 if ((vp->v_flag & VNOCACHE) ||
548 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
549 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) {
550 return (nfs3_directio_read(vp, uiop, cr));
551 }
552
553 do {
554 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
555 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
556 n = MIN(MAXBSIZE - on, uiop->uio_resid);
557
558 error = nfs3_validate_caches(vp, cr);
559 if (error)
560 break;
561
562 mutex_enter(&rp->r_statelock);
563 diff = rp->r_size - uiop->uio_loffset;
564 mutex_exit(&rp->r_statelock);
565 if (diff <= 0)
566 break;
567 if (diff < n)
568 n = (size_t)diff;
569
570 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, S_READ);
571
572 error = uiomove(base + on, n, UIO_READ, uiop);
573
574 if (!error) {
575 /*
576 * If read a whole block or read to eof,
577 * won't need this buffer again soon.
578 */
579 mutex_enter(&rp->r_statelock);
580 if (n + on == MAXBSIZE ||
581 uiop->uio_loffset == rp->r_size)
582 flags = SM_DONTNEED;
583 else
584 flags = 0;
585 mutex_exit(&rp->r_statelock);
586 error = segmap_release(segkmap, base, flags);
587 } else
588 (void) segmap_release(segkmap, base, 0);
589 } while (!error && uiop->uio_resid > 0);
590
591 return (error);
592 }
593
594 /* ARGSUSED */
595 static int
596 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
597 caller_context_t *ct)
598 {
599 rlim64_t limit = uiop->uio_llimit;
600 rnode_t *rp;
601 u_offset_t off;
602 caddr_t base;
603 uint_t flags;
604 int remainder;
605 size_t n;
606 int on;
607 int error;
608 int resid;
609 offset_t offset;
610 mntinfo_t *mi;
611 uint_t bsize;
612
613 rp = VTOR(vp);
614
615 if (vp->v_type != VREG)
616 return (EISDIR);
617
618 mi = VTOMI(vp);
619 if (nfs_zone() != mi->mi_zone)
620 return (EIO);
621 if (uiop->uio_resid == 0)
622 return (0);
623
624 if (ioflag & FAPPEND) {
625 struct vattr va;
626
627 /*
628 * Must serialize if appending.
629 */
630 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
631 nfs_rw_exit(&rp->r_rwlock);
632 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
633 INTR(vp)))
634 return (EINTR);
635 }
636
637 va.va_mask = AT_SIZE;
638 error = nfs3getattr(vp, &va, cr);
639 if (error)
640 return (error);
641 uiop->uio_loffset = va.va_size;
642 }
643
644 offset = uiop->uio_loffset + uiop->uio_resid;
645
646 if (uiop->uio_loffset < 0 || offset < 0)
647 return (EINVAL);
648
649 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
650 limit = MAXOFFSET_T;
651
652 /*
653 * Check to make sure that the process will not exceed
654 * its limit on file size. It is okay to write up to
655 * the limit, but not beyond. Thus, the write which
656 * reaches the limit will be short and the next write
657 * will return an error.
658 */
659 remainder = 0;
660 if (offset > limit) {
661 remainder = offset - limit;
662 uiop->uio_resid = limit - uiop->uio_loffset;
663 if (uiop->uio_resid <= 0) {
664 proc_t *p = ttoproc(curthread);
665
666 uiop->uio_resid += remainder;
667 mutex_enter(&p->p_lock);
668 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
669 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
670 mutex_exit(&p->p_lock);
671 return (EFBIG);
672 }
673 }
674
675 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp)))
676 return (EINTR);
677
678 /*
679 * Bypass VM if caching has been disabled (e.g., locking) or if
680 * using client-side direct I/O and the file is not mmap'd and
681 * there are no cached pages.
682 */
683 if ((vp->v_flag & VNOCACHE) ||
684 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
685 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) {
686 size_t bufsize;
687 int count;
688 u_offset_t org_offset;
689 stable_how stab_comm;
690
691 nfs3_fwrite:
692 if (rp->r_flags & RSTALE) {
693 resid = uiop->uio_resid;
694 offset = uiop->uio_loffset;
695 error = rp->r_error;
696 goto bottom;
697 }
698 bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
699 base = kmem_alloc(bufsize, KM_SLEEP);
700 do {
701 if (ioflag & FDSYNC)
702 stab_comm = DATA_SYNC;
703 else
704 stab_comm = FILE_SYNC;
705 resid = uiop->uio_resid;
706 offset = uiop->uio_loffset;
707 count = MIN(uiop->uio_resid, bufsize);
708 org_offset = uiop->uio_loffset;
709 error = uiomove(base, count, UIO_WRITE, uiop);
710 if (!error) {
711 error = nfs3write(vp, base, org_offset,
712 count, cr, &stab_comm);
713 }
714 } while (!error && uiop->uio_resid > 0);
715 kmem_free(base, bufsize);
716 goto bottom;
717 }
718
719
720 bsize = vp->v_vfsp->vfs_bsize;
721
722 do {
723 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
724 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
725 n = MIN(MAXBSIZE - on, uiop->uio_resid);
726
727 resid = uiop->uio_resid;
728 offset = uiop->uio_loffset;
729
730 if (rp->r_flags & RSTALE) {
731 error = rp->r_error;
732 break;
733 }
734
735 /*
736 * Don't create dirty pages faster than they
737 * can be cleaned so that the system doesn't
738 * get imbalanced. If the async queue is
739 * maxed out, then wait for it to drain before
740 * creating more dirty pages. Also, wait for
741 * any threads doing pagewalks in the vop_getattr
742 * entry points so that they don't block for
743 * long periods.
744 */
745 mutex_enter(&rp->r_statelock);
746 while ((mi->mi_max_threads != 0 &&
747 rp->r_awcount > 2 * mi->mi_max_threads) ||
748 rp->r_gcount > 0)
749 cv_wait(&rp->r_cv, &rp->r_statelock);
750 mutex_exit(&rp->r_statelock);
751
752 if (segmap_kpm) {
753 int pon = uiop->uio_loffset & PAGEOFFSET;
754 size_t pn = MIN(PAGESIZE - pon, uiop->uio_resid);
755 int pagecreate;
756
757 mutex_enter(&rp->r_statelock);
758 pagecreate = (pon == 0) && (pn == PAGESIZE ||
759 uiop->uio_loffset + pn >= rp->r_size);
760 mutex_exit(&rp->r_statelock);
761
762 base = segmap_getmapflt(segkmap, vp, off + on,
763 pn, !pagecreate, S_WRITE);
764
765 error = writerp(rp, base + pon, n, uiop, pagecreate);
766
767 } else {
768 base = segmap_getmapflt(segkmap, vp, off + on,
769 n, 0, S_READ);
770 error = writerp(rp, base + on, n, uiop, 0);
771 }
772
773 if (!error) {
774 if (mi->mi_flags & MI_NOAC)
775 flags = SM_WRITE;
776 else if ((uiop->uio_loffset % bsize) == 0 ||
777 IS_SWAPVP(vp)) {
778 /*
779 * Have written a whole block.
780 * Start an asynchronous write
781 * and mark the buffer to
782 * indicate that it won't be
783 * needed again soon.
784 */
785 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
786 } else
787 flags = 0;
788 if ((ioflag & (FSYNC|FDSYNC)) ||
789 (rp->r_flags & ROUTOFSPACE)) {
790 flags &= ~SM_ASYNC;
791 flags |= SM_WRITE;
792 }
793 error = segmap_release(segkmap, base, flags);
794 } else {
795 (void) segmap_release(segkmap, base, 0);
796 /*
797 * In the event that we got an access error while
798 * faulting in a page for a write-only file just
799 * force a write.
800 */
801 if (error == EACCES)
802 goto nfs3_fwrite;
803 }
804 } while (!error && uiop->uio_resid > 0);
805
806 bottom:
807 if (error) {
808 uiop->uio_resid = resid + remainder;
809 uiop->uio_loffset = offset;
810 } else
811 uiop->uio_resid += remainder;
812
813 nfs_rw_exit(&rp->r_lkserlock);
814
815 return (error);
816 }
817
818 /*
819 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
820 */
821 static int
822 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
823 int flags, cred_t *cr)
824 {
825 struct buf *bp;
826 int error;
827 page_t *savepp;
828 uchar_t fsdata;
829 stable_how stab_comm;
830
831 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
832 bp = pageio_setup(pp, len, vp, flags);
833 ASSERT(bp != NULL);
834
835 /*
836 * pageio_setup should have set b_addr to 0. This
837 * is correct since we want to do I/O on a page
838 * boundary. bp_mapin will use this addr to calculate
839 * an offset, and then set b_addr to the kernel virtual
840 * address it allocated for us.
841 */
842 ASSERT(bp->b_un.b_addr == 0);
843
844 bp->b_edev = 0;
845 bp->b_dev = 0;
846 bp->b_lblkno = lbtodb(off);
847 bp->b_file = vp;
848 bp->b_offset = (offset_t)off;
849 bp_mapin(bp);
850
851 /*
852 * Calculate the desired level of stability to write data
853 * on the server and then mark all of the pages to reflect
854 * this.
855 */
856 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
857 freemem > desfree) {
858 stab_comm = UNSTABLE;
859 fsdata = C_DELAYCOMMIT;
860 } else {
861 stab_comm = FILE_SYNC;
862 fsdata = C_NOCOMMIT;
863 }
864
865 savepp = pp;
866 do {
867 pp->p_fsdata = fsdata;
868 } while ((pp = pp->p_next) != savepp);
869
870 error = nfs3_bio(bp, &stab_comm, cr);
871
872 bp_mapout(bp);
873 pageio_done(bp);
874
875 /*
876 * If the server wrote pages in a more stable fashion than
877 * was requested, then clear all of the marks in the pages
878 * indicating that COMMIT operations were required.
879 */
880 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) {
881 do {
882 pp->p_fsdata = C_NOCOMMIT;
883 } while ((pp = pp->p_next) != savepp);
884 }
885
886 return (error);
887 }
888
889 /*
890 * Write to file. Writes to remote server in largest size
891 * chunks that the server can handle. Write is synchronous.
892 */
893 static int
894 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
895 stable_how *stab_comm)
896 {
897 mntinfo_t *mi;
898 WRITE3args args;
899 WRITE3res res;
900 int error;
901 int tsize;
902 rnode_t *rp;
903 int douprintf;
904
905 rp = VTOR(vp);
906 mi = VTOMI(vp);
907
908 ASSERT(nfs_zone() == mi->mi_zone);
909
910 args.file = *VTOFH3(vp);
911 args.stable = *stab_comm;
912
913 *stab_comm = FILE_SYNC;
914
915 douprintf = 1;
916
917 do {
918 if ((vp->v_flag & VNOCACHE) ||
919 (rp->r_flags & RDIRECTIO) ||
920 (mi->mi_flags & MI_DIRECTIO))
921 tsize = MIN(mi->mi_stsize, count);
922 else
923 tsize = MIN(mi->mi_curwrite, count);
924 args.offset = (offset3)offset;
925 args.count = (count3)tsize;
926 args.data.data_len = (uint_t)tsize;
927 args.data.data_val = base;
928
929 if (mi->mi_io_kstats) {
930 mutex_enter(&mi->mi_lock);
931 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
932 mutex_exit(&mi->mi_lock);
933 }
934 args.mblk = NULL;
935 do {
936 error = rfs3call(mi, NFSPROC3_WRITE,
937 xdr_WRITE3args, (caddr_t)&args,
938 xdr_WRITE3res, (caddr_t)&res, cr,
939 &douprintf, &res.status, 0, NULL);
940 } while (error == ENFS_TRYAGAIN);
941 if (mi->mi_io_kstats) {
942 mutex_enter(&mi->mi_lock);
943 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
944 mutex_exit(&mi->mi_lock);
945 }
946
947 if (error)
948 return (error);
949 error = geterrno3(res.status);
950 if (!error) {
951 if (res.resok.count > args.count) {
952 zcmn_err(getzoneid(), CE_WARN,
953 "nfs3write: server %s wrote %u, "
954 "requested was %u",
955 rp->r_server->sv_hostname,
956 res.resok.count, args.count);
957 return (EIO);
958 }
959 if (res.resok.committed == UNSTABLE) {
960 *stab_comm = UNSTABLE;
961 if (args.stable == DATA_SYNC ||
962 args.stable == FILE_SYNC) {
963 zcmn_err(getzoneid(), CE_WARN,
964 "nfs3write: server %s did not commit to stable storage",
965 rp->r_server->sv_hostname);
966 return (EIO);
967 }
968 }
969 tsize = (int)res.resok.count;
970 count -= tsize;
971 base += tsize;
972 offset += tsize;
973 if (mi->mi_io_kstats) {
974 mutex_enter(&mi->mi_lock);
975 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
976 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
977 tsize;
978 mutex_exit(&mi->mi_lock);
979 }
980 lwp_stat_update(LWP_STAT_OUBLK, 1);
981 mutex_enter(&rp->r_statelock);
982 if (rp->r_flags & RHAVEVERF) {
983 if (rp->r_verf != res.resok.verf) {
984 nfs3_set_mod(vp);
985 rp->r_verf = res.resok.verf;
986 /*
987 * If the data was written UNSTABLE,
988 * then might as well stop because
989 * the whole block will have to get
990 * rewritten anyway.
991 */
992 if (*stab_comm == UNSTABLE) {
993 mutex_exit(&rp->r_statelock);
994 break;
995 }
996 }
997 } else {
998 rp->r_verf = res.resok.verf;
999 rp->r_flags |= RHAVEVERF;
1000 }
1001 /*
1002 * Mark the attribute cache as timed out and
1003 * set RWRITEATTR to indicate that the file
1004 * was modified with a WRITE operation and
1005 * that the attributes can not be trusted.
1006 */
1007 PURGE_ATTRCACHE_LOCKED(rp);
1008 rp->r_flags |= RWRITEATTR;
1009 mutex_exit(&rp->r_statelock);
1010 }
1011 } while (!error && count);
1012
1013 return (error);
1014 }
1015
1016 /*
1017 * Read from a file. Reads data in largest chunks our interface can handle.
1018 */
1019 static int
1020 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count,
1021 size_t *residp, cred_t *cr)
1022 {
1023 mntinfo_t *mi;
1024 READ3args args;
1025 READ3vres res;
1026 int tsize;
1027 int error;
1028 int douprintf;
1029 failinfo_t fi;
1030 rnode_t *rp;
1031 struct vattr va;
1032 hrtime_t t;
1033
1034 rp = VTOR(vp);
1035 mi = VTOMI(vp);
1036 ASSERT(nfs_zone() == mi->mi_zone);
1037 douprintf = 1;
1038
1039 args.file = *VTOFH3(vp);
1040 fi.vp = vp;
1041 fi.fhp = (caddr_t)&args.file;
1042 fi.copyproc = nfs3copyfh;
1043 fi.lookupproc = nfs3lookup;
1044 fi.xattrdirproc = acl_getxattrdir3;
1045
1046 res.pov.fres.vp = vp;
1047 res.pov.fres.vap = &va;
1048
1049 *residp = count;
1050 do {
1051 if (mi->mi_io_kstats) {
1052 mutex_enter(&mi->mi_lock);
1053 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1054 mutex_exit(&mi->mi_lock);
1055 }
1056
1057 do {
1058 if ((vp->v_flag & VNOCACHE) ||
1059 (rp->r_flags & RDIRECTIO) ||
1060 (mi->mi_flags & MI_DIRECTIO))
1061 tsize = MIN(mi->mi_tsize, count);
1062 else
1063 tsize = MIN(mi->mi_curread, count);
1064 res.data.data_val = base;
1065 res.data.data_len = tsize;
1066 args.offset = (offset3)offset;
1067 args.count = (count3)tsize;
1068 t = gethrtime();
1069 error = rfs3call(mi, NFSPROC3_READ,
1070 xdr_READ3args, (caddr_t)&args,
1071 xdr_READ3vres, (caddr_t)&res, cr,
1072 &douprintf, &res.status, 0, &fi);
1073 } while (error == ENFS_TRYAGAIN);
1074
1075 if (mi->mi_io_kstats) {
1076 mutex_enter(&mi->mi_lock);
1077 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1078 mutex_exit(&mi->mi_lock);
1079 }
1080
1081 if (error)
1082 return (error);
1083
1084 error = geterrno3(res.status);
1085 if (error)
1086 return (error);
1087
1088 if (res.count != res.data.data_len) {
1089 zcmn_err(getzoneid(), CE_WARN,
1090 "nfs3read: server %s returned incorrect amount",
1091 rp->r_server->sv_hostname);
1092 return (EIO);
1093 }
1094
1095 count -= res.count;
1096 *residp = count;
1097 base += res.count;
1098 offset += res.count;
1099 if (mi->mi_io_kstats) {
1100 mutex_enter(&mi->mi_lock);
1101 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
1102 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
1103 mutex_exit(&mi->mi_lock);
1104 }
1105 lwp_stat_update(LWP_STAT_INBLK, 1);
1106 } while (count && !res.eof);
1107
1108 if (res.pov.attributes) {
1109 mutex_enter(&rp->r_statelock);
1110 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) {
1111 mutex_exit(&rp->r_statelock);
1112 PURGE_ATTRCACHE(vp);
1113 } else {
1114 if (rp->r_mtime <= t)
1115 nfs_attrcache_va(vp, &va);
1116 mutex_exit(&rp->r_statelock);
1117 }
1118 }
1119
1120 return (0);
1121 }
1122
1123 /* ARGSUSED */
1124 static int
1125 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp)
1126 {
1127
1128 if (nfs_zone() != VTOMI(vp)->mi_zone)
1129 return (EIO);
1130 switch (cmd) {
1131 case _FIODIRECTIO:
1132 return (nfs_directio(vp, (int)arg, cr));
1133 default:
1134 return (ENOTTY);
1135 }
1136 }
1137
1138 static int
1139 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
1140 {
1141 int error;
1142 rnode_t *rp;
1143
1144 if (nfs_zone() != VTOMI(vp)->mi_zone)
1145 return (EIO);
1146 /*
1147 * If it has been specified that the return value will
1148 * just be used as a hint, and we are only being asked
1149 * for size, fsid or rdevid, then return the client's
1150 * notion of these values without checking to make sure
1151 * that the attribute cache is up to date.
1152 * The whole point is to avoid an over the wire GETATTR
1153 * call.
1154 */
1155 rp = VTOR(vp);
1156 if (flags & ATTR_HINT) {
1157 if (vap->va_mask ==
1158 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
1159 mutex_enter(&rp->r_statelock);
1160 if (vap->va_mask | AT_SIZE)
1161 vap->va_size = rp->r_size;
1162 if (vap->va_mask | AT_FSID)
1163 vap->va_fsid = rp->r_attr.va_fsid;
1164 if (vap->va_mask | AT_RDEV)
1165 vap->va_rdev = rp->r_attr.va_rdev;
1166 mutex_exit(&rp->r_statelock);
1167 return (0);
1168 }
1169 }
1170
1171 /*
1172 * Only need to flush pages if asking for the mtime
1173 * and if there any dirty pages or any outstanding
1174 * asynchronous (write) requests for this file.
1175 */
1176 if (vap->va_mask & AT_MTIME) {
1177 if (vn_has_cached_data(vp) &&
1178 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) {
1179 mutex_enter(&rp->r_statelock);
1180 rp->r_gcount++;
1181 mutex_exit(&rp->r_statelock);
1182 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr);
1183 mutex_enter(&rp->r_statelock);
1184 if (error && (error == ENOSPC || error == EDQUOT)) {
1185 if (!rp->r_error)
1186 rp->r_error = error;
1187 }
1188 if (--rp->r_gcount == 0)
1189 cv_broadcast(&rp->r_cv);
1190 mutex_exit(&rp->r_statelock);
1191 }
1192 }
1193
1194 return (nfs3getattr(vp, vap, cr));
1195 }
1196
1197 /*ARGSUSED4*/
1198 static int
1199 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1200 caller_context_t *ct)
1201 {
1202 int error;
1203 struct vattr va;
1204
1205 if (vap->va_mask & AT_NOSET)
1206 return (EINVAL);
1207 if (nfs_zone() != VTOMI(vp)->mi_zone)
1208 return (EIO);
1209
1210 va.va_mask = AT_UID | AT_MODE;
1211 error = nfs3getattr(vp, &va, cr);
1212 if (error)
1213 return (error);
1214
1215 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx,
1216 vp);
1217 if (error)
1218 return (error);
1219
1220 return (nfs3setattr(vp, vap, flags, cr));
1221 }
1222
1223 static int
1224 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
1225 {
1226 int error;
1227 uint_t mask;
1228 SETATTR3args args;
1229 SETATTR3res res;
1230 int douprintf;
1231 rnode_t *rp;
1232 struct vattr va;
1233 mode_t omode;
1234 vsecattr_t *vsp;
1235 hrtime_t t;
1236
1237 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
1238 mask = vap->va_mask;
1239
1240 rp = VTOR(vp);
1241
1242 /*
1243 * Only need to flush pages if there are any pages and
1244 * if the file is marked as dirty in some fashion. The
1245 * file must be flushed so that we can accurately
1246 * determine the size of the file and the cached data
1247 * after the SETATTR returns. A file is considered to
1248 * be dirty if it is either marked with RDIRTY, has
1249 * outstanding i/o's active, or is mmap'd. In this
1250 * last case, we can't tell whether there are dirty
1251 * pages, so we flush just to be sure.
1252 */
1253 if (vn_has_cached_data(vp) &&
1254 ((rp->r_flags & RDIRTY) ||
1255 rp->r_count > 0 ||
1256 rp->r_mapcnt > 0)) {
1257 ASSERT(vp->v_type != VCHR);
1258 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr);
1259 if (error && (error == ENOSPC || error == EDQUOT)) {
1260 mutex_enter(&rp->r_statelock);
1261 if (!rp->r_error)
1262 rp->r_error = error;
1263 mutex_exit(&rp->r_statelock);
1264 }
1265 }
1266
1267 args.object = *RTOFH3(rp);
1268 /*
1269 * If the intent is for the server to set the times,
1270 * there is no point in have the mask indicating set mtime or
1271 * atime, because the vap values may be junk, and so result
1272 * in an overflow error. Remove these flags from the vap mask
1273 * before calling in this case, and restore them afterwards.
1274 */
1275 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) {
1276 /* Use server times, so don't set the args time fields */
1277 vap->va_mask &= ~(AT_ATIME | AT_MTIME);
1278 error = vattr_to_sattr3(vap, &args.new_attributes);
1279 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME));
1280 if (mask & AT_ATIME) {
1281 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
1282 }
1283 if (mask & AT_MTIME) {
1284 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
1285 }
1286 } else {
1287 /* Either do not set times or use the client specified times */
1288 error = vattr_to_sattr3(vap, &args.new_attributes);
1289 }
1290
1291 if (error) {
1292 /* req time field(s) overflow - return immediately */
1293 return (error);
1294 }
1295
1296 va.va_mask = AT_MODE | AT_CTIME;
1297 error = nfs3getattr(vp, &va, cr);
1298 if (error)
1299 return (error);
1300 omode = va.va_mode;
1301
1302 tryagain:
1303 if (mask & AT_SIZE) {
1304 args.guard.check = TRUE;
1305 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec;
1306 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec;
1307 } else
1308 args.guard.check = FALSE;
1309
1310 douprintf = 1;
1311
1312 t = gethrtime();
1313
1314 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
1315 xdr_SETATTR3args, (caddr_t)&args,
1316 xdr_SETATTR3res, (caddr_t)&res, cr,
1317 &douprintf, &res.status, 0, NULL);
1318
1319 /*
1320 * Purge the access cache and ACL cache if changing either the
1321 * owner of the file, the group owner, or the mode. These may
1322 * change the access permissions of the file, so purge old
1323 * information and start over again.
1324 */
1325 if (mask & (AT_UID | AT_GID | AT_MODE)) {
1326 (void) nfs_access_purge_rp(rp);
1327 if (rp->r_secattr != NULL) {
1328 mutex_enter(&rp->r_statelock);
1329 vsp = rp->r_secattr;
1330 rp->r_secattr = NULL;
1331 mutex_exit(&rp->r_statelock);
1332 if (vsp != NULL)
1333 nfs_acl_free(vsp);
1334 }
1335 }
1336
1337 if (error) {
1338 PURGE_ATTRCACHE(vp);
1339 return (error);
1340 }
1341
1342 error = geterrno3(res.status);
1343 if (!error) {
1344 /*
1345 * If changing the size of the file, invalidate
1346 * any local cached data which is no longer part
1347 * of the file. We also possibly invalidate the
1348 * last page in the file. We could use
1349 * pvn_vpzero(), but this would mark the page as
1350 * modified and require it to be written back to
1351 * the server for no particularly good reason.
1352 * This way, if we access it, then we bring it
1353 * back in. A read should be cheaper than a
1354 * write.
1355 */
1356 if (mask & AT_SIZE) {
1357 nfs_invalidate_pages(vp,
1358 (vap->va_size & PAGEMASK), cr);
1359 }
1360 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
1361 /*
1362 * Some servers will change the mode to clear the setuid
1363 * and setgid bits when changing the uid or gid. The
1364 * client needs to compensate appropriately.
1365 */
1366 if (mask & (AT_UID | AT_GID)) {
1367 int terror;
1368
1369 va.va_mask = AT_MODE;
1370 terror = nfs3getattr(vp, &va, cr);
1371 if (!terror &&
1372 (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
1373 (!(mask & AT_MODE) && va.va_mode != omode))) {
1374 va.va_mask = AT_MODE;
1375 if (mask & AT_MODE)
1376 va.va_mode = vap->va_mode;
1377 else
1378 va.va_mode = omode;
1379 (void) nfs3setattr(vp, &va, 0, cr);
1380 }
1381 }
1382 } else {
1383 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
1384 /*
1385 * If we got back a "not synchronized" error, then
1386 * we need to retry with a new guard value. The
1387 * guard value used is the change time. If the
1388 * server returned post_op_attr, then we can just
1389 * retry because we have the latest attributes.
1390 * Otherwise, we issue a GETATTR to get the latest
1391 * attributes and then retry. If we couldn't get
1392 * the attributes this way either, then we give
1393 * up because we can't complete the operation as
1394 * required.
1395 */
1396 if (res.status == NFS3ERR_NOT_SYNC) {
1397 va.va_mask = AT_CTIME;
1398 if (nfs3getattr(vp, &va, cr) == 0)
1399 goto tryagain;
1400 }
1401 PURGE_STALE_FH(error, vp, cr);
1402 }
1403
1404 return (error);
1405 }
1406
1407 static int
1408 nfs3_accessx(void *vp, int mode, cred_t *cr)
1409 {
1410 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone);
1411 return (nfs3_access(vp, mode, 0, cr));
1412 }
1413
1414 /* ARGSUSED */
1415 static int
1416 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr)
1417 {
1418 int error;
1419 ACCESS3args args;
1420 ACCESS3res res;
1421 int douprintf;
1422 uint32 acc;
1423 rnode_t *rp;
1424 cred_t *cred, *ncr, *ncrfree = NULL;
1425 failinfo_t fi;
1426 nfs_access_type_t cacc;
1427 hrtime_t t;
1428
1429 acc = 0;
1430 if (nfs_zone() != VTOMI(vp)->mi_zone)
1431 return (EIO);
1432 if (mode & VREAD)
1433 acc |= ACCESS3_READ;
1434 if (mode & VWRITE) {
1435 if (vn_is_readonly(vp) && !IS_DEVVP(vp))
1436 return (EROFS);
1437 if (vp->v_type == VDIR)
1438 acc |= ACCESS3_DELETE;
1439 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND;
1440 }
1441 if (mode & VEXEC) {
1442 if (vp->v_type == VDIR)
1443 acc |= ACCESS3_LOOKUP;
1444 else
1445 acc |= ACCESS3_EXECUTE;
1446 }
1447
1448 rp = VTOR(vp);
1449 args.object = *VTOFH3(vp);
1450 if (vp->v_type == VDIR) {
1451 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY |
1452 ACCESS3_EXTEND | ACCESS3_LOOKUP;
1453 } else {
1454 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND |
1455 ACCESS3_EXECUTE;
1456 }
1457 fi.vp = vp;
1458 fi.fhp = (caddr_t)&args.object;
1459 fi.copyproc = nfs3copyfh;
1460 fi.lookupproc = nfs3lookup;
1461 fi.xattrdirproc = acl_getxattrdir3;
1462
1463 cred = cr;
1464 /*
1465 * ncr and ncrfree both initially
1466 * point to the memory area returned
1467 * by crnetadjust();
1468 * ncrfree not NULL when exiting means
1469 * that we need to release it
1470 */
1471 ncr = crnetadjust(cred);
1472 ncrfree = ncr;
1473 tryagain:
1474 if (rp->r_acache != NULL) {
1475 cacc = nfs_access_check(rp, acc, cred);
1476 if (cacc == NFS_ACCESS_ALLOWED) {
1477 if (ncrfree != NULL)
1478 crfree(ncrfree);
1479 return (0);
1480 }
1481 if (cacc == NFS_ACCESS_DENIED) {
1482 /*
1483 * If the cred can be adjusted, try again
1484 * with the new cred.
1485 */
1486 if (ncr != NULL) {
1487 cred = ncr;
1488 ncr = NULL;
1489 goto tryagain;
1490 }
1491 if (ncrfree != NULL)
1492 crfree(ncrfree);
1493 return (EACCES);
1494 }
1495 }
1496
1497 douprintf = 1;
1498
1499 t = gethrtime();
1500
1501 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS,
1502 xdr_ACCESS3args, (caddr_t)&args,
1503 xdr_ACCESS3res, (caddr_t)&res, cred,
1504 &douprintf, &res.status, 0, &fi);
1505
1506 if (error) {
1507 if (ncrfree != NULL)
1508 crfree(ncrfree);
1509 return (error);
1510 }
1511
1512 error = geterrno3(res.status);
1513 if (!error) {
1514 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
1515 nfs_access_cache(rp, args.access, res.resok.access, cred);
1516 /*
1517 * we just cached results with cred; if cred is the
1518 * adjusted credentials from crnetadjust, we do not want
1519 * to release them before exiting: hence setting ncrfree
1520 * to NULL
1521 */
1522 if (cred != cr)
1523 ncrfree = NULL;
1524 if ((acc & res.resok.access) != acc) {
1525 /*
1526 * If the cred can be adjusted, try again
1527 * with the new cred.
1528 */
1529 if (ncr != NULL) {
1530 cred = ncr;
1531 ncr = NULL;
1532 goto tryagain;
1533 }
1534 error = EACCES;
1535 }
1536 } else {
1537 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
1538 PURGE_STALE_FH(error, vp, cr);
1539 }
1540
1541 if (ncrfree != NULL)
1542 crfree(ncrfree);
1543
1544 return (error);
1545 }
1546
1547 static int nfs3_do_symlink_cache = 1;
1548
1549 static int
1550 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr)
1551 {
1552 int error;
1553 READLINK3args args;
1554 READLINK3res res;
1555 nfspath3 resdata_backup;
1556 rnode_t *rp;
1557 int douprintf;
1558 int len;
1559 failinfo_t fi;
1560 hrtime_t t;
1561
1562 /*
1563 * Can't readlink anything other than a symbolic link.
1564 */
1565 if (vp->v_type != VLNK)
1566 return (EINVAL);
1567 if (nfs_zone() != VTOMI(vp)->mi_zone)
1568 return (EIO);
1569
1570 rp = VTOR(vp);
1571 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) {
1572 error = nfs3_validate_caches(vp, cr);
1573 if (error)
1574 return (error);
1575 mutex_enter(&rp->r_statelock);
1576 if (rp->r_symlink.contents != NULL) {
1577 error = uiomove(rp->r_symlink.contents,
1578 rp->r_symlink.len, UIO_READ, uiop);
1579 mutex_exit(&rp->r_statelock);
1580 return (error);
1581 }
1582 mutex_exit(&rp->r_statelock);
1583 }
1584
1585 args.symlink = *VTOFH3(vp);
1586 fi.vp = vp;
1587 fi.fhp = (caddr_t)&args.symlink;
1588 fi.copyproc = nfs3copyfh;
1589 fi.lookupproc = nfs3lookup;
1590 fi.xattrdirproc = acl_getxattrdir3;
1591
1592 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1593
1594 resdata_backup = res.resok.data;
1595
1596 douprintf = 1;
1597
1598 t = gethrtime();
1599
1600 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK,
1601 xdr_nfs_fh3, (caddr_t)&args,
1602 xdr_READLINK3res, (caddr_t)&res, cr,
1603 &douprintf, &res.status, 0, &fi);
1604
1605 if (res.resok.data == nfs3nametoolong)
1606 error = EINVAL;
1607
1608 if (error) {
1609 kmem_free(resdata_backup, MAXPATHLEN);
1610 return (error);
1611 }
1612
1613 error = geterrno3(res.status);
1614 if (!error) {
1615 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t,
1616 cr);
1617 len = strlen(res.resok.data);
1618 error = uiomove(res.resok.data, len, UIO_READ, uiop);
1619 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) {
1620 mutex_enter(&rp->r_statelock);
1621 if (rp->r_symlink.contents == NULL) {
1622 rp->r_symlink.contents = res.resok.data;
1623 rp->r_symlink.len = len;
1624 rp->r_symlink.size = MAXPATHLEN;
1625 mutex_exit(&rp->r_statelock);
1626 } else {
1627 mutex_exit(&rp->r_statelock);
1628
1629 kmem_free((void *)res.resok.data, MAXPATHLEN);
1630 }
1631 } else {
1632 kmem_free((void *)res.resok.data, MAXPATHLEN);
1633 }
1634 } else {
1635 nfs3_cache_post_op_attr(vp,
1636 &res.resfail.symlink_attributes, t, cr);
1637 PURGE_STALE_FH(error, vp, cr);
1638
1639 kmem_free((void *)res.resok.data, MAXPATHLEN);
1640
1641 }
1642
1643 /*
1644 * The over the wire error for attempting to readlink something
1645 * other than a symbolic link is ENXIO. However, we need to
1646 * return EINVAL instead of ENXIO, so we map it here.
1647 */
1648 return (error == ENXIO ? EINVAL : error);
1649 }
1650
1651 /*
1652 * Flush local dirty pages to stable storage on the server.
1653 *
1654 * If FNODSYNC is specified, then there is nothing to do because
1655 * metadata changes are not cached on the client before being
1656 * sent to the server.
1657 */
1658 static int
1659 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr)
1660 {
1661 int error;
1662
1663 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
1664 return (0);
1665 if (nfs_zone() != VTOMI(vp)->mi_zone)
1666 return (EIO);
1667
1668 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
1669 if (!error)
1670 error = VTOR(vp)->r_error;
1671 return (error);
1672 }
1673
1674 /*
1675 * Weirdness: if the file was removed or the target of a rename
1676 * operation while it was open, it got renamed instead. Here we
1677 * remove the renamed file.
1678 */
1679 static void
1680 nfs3_inactive(vnode_t *vp, cred_t *cr)
1681 {
1682 rnode_t *rp;
1683
1684 ASSERT(vp != DNLC_NO_VNODE);
1685
1686 /*
1687 * If this is coming from the wrong zone, we let someone in the right
1688 * zone take care of it asynchronously. We can get here due to
1689 * VN_RELE() being called from pageout() or fsflush(). This call may
1690 * potentially turn into an expensive no-op if, for instance, v_count
1691 * gets incremented in the meantime, but it's still correct.
1692 */
1693 if (nfs_zone() != VTOMI(vp)->mi_zone) {
1694 nfs_async_inactive(vp, cr, nfs3_inactive);
1695 return;
1696 }
1697
1698 rp = VTOR(vp);
1699 redo:
1700 if (rp->r_unldvp != NULL) {
1701 /*
1702 * Save the vnode pointer for the directory where the
1703 * unlinked-open file got renamed, then set it to NULL
1704 * to prevent another thread from getting here before
1705 * we're done with the remove. While we have the
1706 * statelock, make local copies of the pertinent rnode
1707 * fields. If we weren't to do this in an atomic way, the
1708 * the unl* fields could become inconsistent with respect
1709 * to each other due to a race condition between this
1710 * code and nfs_remove(). See bug report 1034328.
1711 */
1712 mutex_enter(&rp->r_statelock);
1713 if (rp->r_unldvp != NULL) {
1714 vnode_t *unldvp;
1715 char *unlname;
1716 cred_t *unlcred;
1717 REMOVE3args args;
1718 REMOVE3res res;
1719 int douprintf;
1720 int error;
1721 hrtime_t t;
1722
1723 unldvp = rp->r_unldvp;
1724 rp->r_unldvp = NULL;
1725 unlname = rp->r_unlname;
1726 rp->r_unlname = NULL;
1727 unlcred = rp->r_unlcred;
1728 rp->r_unlcred = NULL;
1729 mutex_exit(&rp->r_statelock);
1730
1731 /*
1732 * If there are any dirty pages left, then flush
1733 * them. This is unfortunate because they just
1734 * may get thrown away during the remove operation,
1735 * but we have to do this for correctness.
1736 */
1737 if (vn_has_cached_data(vp) &&
1738 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
1739 ASSERT(vp->v_type != VCHR);
1740 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr);
1741 if (error) {
1742 mutex_enter(&rp->r_statelock);
1743 if (!rp->r_error)
1744 rp->r_error = error;
1745 mutex_exit(&rp->r_statelock);
1746 }
1747 }
1748
1749 /*
1750 * Do the remove operation on the renamed file
1751 */
1752 setdiropargs3(&args.object, unlname, unldvp);
1753
1754 douprintf = 1;
1755
1756 t = gethrtime();
1757
1758 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE,
1759 xdr_diropargs3, (caddr_t)&args,
1760 xdr_REMOVE3res, (caddr_t)&res, unlcred,
1761 &douprintf, &res.status, 0, NULL);
1762
1763 if (error) {
1764 PURGE_ATTRCACHE(unldvp);
1765 } else {
1766 error = geterrno3(res.status);
1767 if (!error) {
1768 nfs3_cache_wcc_data(unldvp,
1769 &res.resok.dir_wcc, t, cr);
1770 if (HAVE_RDDIR_CACHE(VTOR(unldvp)))
1771 nfs_purge_rddir_cache(unldvp);
1772 } else {
1773 nfs3_cache_wcc_data(unldvp,
1774 &res.resfail.dir_wcc, t, cr);
1775 PURGE_STALE_FH(error, unldvp, cr);
1776 }
1777 }
1778
1779 /*
1780 * Release stuff held for the remove
1781 */
1782 VN_RELE(unldvp);
1783 kmem_free(unlname, MAXNAMELEN);
1784 crfree(unlcred);
1785 goto redo;
1786 }
1787 mutex_exit(&rp->r_statelock);
1788 }
1789
1790 rp_addfree(rp, cr);
1791 }
1792
1793 /*
1794 * Remote file system operations having to do with directory manipulation.
1795 */
1796
1797 static int
1798 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1799 int flags, vnode_t *rdir, cred_t *cr)
1800 {
1801 int error;
1802 vnode_t *vp;
1803 vnode_t *avp = NULL;
1804 rnode_t *drp;
1805
1806 if (nfs_zone() != VTOMI(dvp)->mi_zone)
1807 return (EPERM);
1808
1809 drp = VTOR(dvp);
1810
1811 /*
1812 * Are we looking up extended attributes? If so, "dvp" is
1813 * the file or directory for which we want attributes, and
1814 * we need a lookup of the hidden attribute directory
1815 * before we lookup the rest of the path.
1816 */
1817 if (flags & LOOKUP_XATTR) {
1818 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0);
1819 mntinfo_t *mi;
1820
1821 mi = VTOMI(dvp);
1822 if (!(mi->mi_flags & MI_EXTATTR))
1823 return (EINVAL);
1824
1825 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp)))
1826 return (EINTR);
1827
1828 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr);
1829 if (avp == NULL)
1830 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0);
1831 else
1832 error = 0;
1833
1834 nfs_rw_exit(&drp->r_rwlock);
1835
1836 if (error) {
1837 if (mi->mi_flags & MI_EXTATTR)
1838 return (error);
1839 return (EINVAL);
1840 }
1841 dvp = avp;
1842 drp = VTOR(dvp);
1843 }
1844
1845 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) {
1846 error = EINTR;
1847 goto out;
1848 }
1849
1850 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0);
1851
1852 nfs_rw_exit(&drp->r_rwlock);
1853
1854 /*
1855 * If vnode is a device, create special vnode.
1856 */
1857 if (!error && IS_DEVVP(*vpp)) {
1858 vp = *vpp;
1859 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
1860 VN_RELE(vp);
1861 }
1862
1863 out:
1864 if (avp != NULL)
1865 VN_RELE(avp);
1866
1867 return (error);
1868 }
1869
1870 static int nfs3_lookup_neg_cache = 1;
1871
1872 #ifdef DEBUG
1873 static int nfs3_lookup_dnlc_hits = 0;
1874 static int nfs3_lookup_dnlc_misses = 0;
1875 static int nfs3_lookup_dnlc_neg_hits = 0;
1876 static int nfs3_lookup_dnlc_disappears = 0;
1877 static int nfs3_lookup_dnlc_lookups = 0;
1878 #endif
1879
1880 /* ARGSUSED */
1881 int
1882 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1883 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags)
1884 {
1885 int error;
1886 rnode_t *drp;
1887
1888 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
1889 /*
1890 * If lookup is for "", just return dvp. Don't need
1891 * to send it over the wire, look it up in the dnlc,
1892 * or perform any access checks.
1893 */
1894 if (*nm == '\0') {
1895 VN_HOLD(dvp);
1896 *vpp = dvp;
1897 return (0);
1898 }
1899
1900 /*
1901 * Can't do lookups in non-directories.
1902 */
1903 if (dvp->v_type != VDIR)
1904 return (ENOTDIR);
1905
1906 /*
1907 * If we're called with RFSCALL_SOFT, it's important that
1908 * the only rfscall is one we make directly; if we permit
1909 * an access call because we're looking up "." or validating
1910 * a dnlc hit, we'll deadlock because that rfscall will not
1911 * have the RFSCALL_SOFT set.
1912 */
1913 if (rfscall_flags & RFSCALL_SOFT)
1914 goto callit;
1915
1916 /*
1917 * If lookup is for ".", just return dvp. Don't need
1918 * to send it over the wire or look it up in the dnlc,
1919 * just need to check access.
1920 */
1921 if (strcmp(nm, ".") == 0) {
1922 error = nfs3_access(dvp, VEXEC, 0, cr);
1923 if (error)
1924 return (error);
1925 VN_HOLD(dvp);
1926 *vpp = dvp;
1927 return (0);
1928 }
1929
1930 drp = VTOR(dvp);
1931 if (!(drp->r_flags & RLOOKUP)) {
1932 mutex_enter(&drp->r_statelock);
1933 drp->r_flags |= RLOOKUP;
1934 mutex_exit(&drp->r_statelock);
1935 }
1936
1937 /*
1938 * Lookup this name in the DNLC. If there was a valid entry,
1939 * then return the results of the lookup.
1940 */
1941 error = nfs3lookup_dnlc(dvp, nm, vpp, cr);
1942 if (error || *vpp != NULL)
1943 return (error);
1944
1945 callit:
1946 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags);
1947
1948 return (error);
1949 }
1950
1951 static int
1952 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
1953 {
1954 int error;
1955 vnode_t *vp;
1956
1957 ASSERT(*nm != '\0');
1958 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
1959 /*
1960 * Lookup this name in the DNLC. If successful, then validate
1961 * the caches and then recheck the DNLC. The DNLC is rechecked
1962 * just in case this entry got invalidated during the call
1963 * to nfs3_validate_caches.
1964 *
1965 * An assumption is being made that it is safe to say that a
1966 * file exists which may not on the server. Any operations to
1967 * the server will fail with ESTALE.
1968 */
1969 #ifdef DEBUG
1970 nfs3_lookup_dnlc_lookups++;
1971 #endif
1972 vp = dnlc_lookup(dvp, nm);
1973 if (vp != NULL) {
1974 VN_RELE(vp);
1975 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) {
1976 PURGE_ATTRCACHE(dvp);
1977 }
1978 error = nfs3_validate_caches(dvp, cr);
1979 if (error)
1980 return (error);
1981 vp = dnlc_lookup(dvp, nm);
1982 if (vp != NULL) {
1983 error = nfs3_access(dvp, VEXEC, 0, cr);
1984 if (error) {
1985 VN_RELE(vp);
1986 return (error);
1987 }
1988 if (vp == DNLC_NO_VNODE) {
1989 VN_RELE(vp);
1990 #ifdef DEBUG
1991 nfs3_lookup_dnlc_neg_hits++;
1992 #endif
1993 return (ENOENT);
1994 }
1995 *vpp = vp;
1996 #ifdef DEBUG
1997 nfs3_lookup_dnlc_hits++;
1998 #endif
1999 return (0);
2000 }
2001 #ifdef DEBUG
2002 nfs3_lookup_dnlc_disappears++;
2003 #endif
2004 }
2005 #ifdef DEBUG
2006 else
2007 nfs3_lookup_dnlc_misses++;
2008 #endif
2009
2010 *vpp = NULL;
2011
2012 return (0);
2013 }
2014
2015 static int
2016 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
2017 int rfscall_flags)
2018 {
2019 int error;
2020 LOOKUP3args args;
2021 LOOKUP3vres res;
2022 int douprintf;
2023 struct vattr vattr;
2024 struct vattr dvattr;
2025 vnode_t *vp;
2026 failinfo_t fi;
2027 hrtime_t t;
2028
2029 ASSERT(*nm != '\0');
2030 ASSERT(dvp->v_type == VDIR);
2031 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2032
2033 setdiropargs3(&args.what, nm, dvp);
2034
2035 fi.vp = dvp;
2036 fi.fhp = (caddr_t)&args.what.dir;
2037 fi.copyproc = nfs3copyfh;
2038 fi.lookupproc = nfs3lookup;
2039 fi.xattrdirproc = acl_getxattrdir3;
2040 res.obj_attributes.fres.vp = dvp;
2041 res.obj_attributes.fres.vap = &vattr;
2042 res.dir_attributes.fres.vp = dvp;
2043 res.dir_attributes.fres.vap = &dvattr;
2044
2045 douprintf = 1;
2046
2047 t = gethrtime();
2048
2049 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP,
2050 xdr_diropargs3, (caddr_t)&args,
2051 xdr_LOOKUP3vres, (caddr_t)&res, cr,
2052 &douprintf, &res.status, rfscall_flags, &fi);
2053
2054 if (error)
2055 return (error);
2056
2057 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr);
2058
2059 error = geterrno3(res.status);
2060 if (error) {
2061 PURGE_STALE_FH(error, dvp, cr);
2062 if (error == ENOENT && nfs3_lookup_neg_cache)
2063 dnlc_enter(dvp, nm, DNLC_NO_VNODE);
2064 return (error);
2065 }
2066
2067 if (res.obj_attributes.attributes) {
2068 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap,
2069 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2070 } else {
2071 vp = makenfs3node_va(&res.object, NULL,
2072 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2073 if (vp->v_type == VNON) {
2074 vattr.va_mask = AT_TYPE;
2075 error = nfs3getattr(vp, &vattr, cr);
2076 if (error) {
2077 VN_RELE(vp);
2078 return (error);
2079 }
2080 vp->v_type = vattr.va_type;
2081 }
2082 }
2083
2084 if (!(rfscall_flags & RFSCALL_SOFT))
2085 dnlc_update(dvp, nm, vp);
2086
2087 *vpp = vp;
2088
2089 return (error);
2090 }
2091
2092 #ifdef DEBUG
2093 static int nfs3_create_misses = 0;
2094 #endif
2095
2096 /* ARGSUSED */
2097 static int
2098 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2099 int mode, vnode_t **vpp, cred_t *cr, int lfaware)
2100 {
2101 int error;
2102 vnode_t *vp;
2103 rnode_t *rp;
2104 struct vattr vattr;
2105 rnode_t *drp;
2106 vnode_t *tempvp;
2107
2108 drp = VTOR(dvp);
2109 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2110 return (EPERM);
2111 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2112 return (EINTR);
2113
2114 top:
2115 /*
2116 * We make a copy of the attributes because the caller does not
2117 * expect us to change what va points to.
2118 */
2119 vattr = *va;
2120
2121 /*
2122 * If the pathname is "", just use dvp. Don't need
2123 * to send it over the wire, look it up in the dnlc,
2124 * or perform any access checks.
2125 */
2126 if (*nm == '\0') {
2127 error = 0;
2128 VN_HOLD(dvp);
2129 vp = dvp;
2130 /*
2131 * If the pathname is ".", just use dvp. Don't need
2132 * to send it over the wire or look it up in the dnlc,
2133 * just need to check access.
2134 */
2135 } else if (strcmp(nm, ".") == 0) {
2136 error = nfs3_access(dvp, VEXEC, 0, cr);
2137 if (error) {
2138 nfs_rw_exit(&drp->r_rwlock);
2139 return (error);
2140 }
2141 VN_HOLD(dvp);
2142 vp = dvp;
2143 /*
2144 * We need to go over the wire, just to be sure whether the
2145 * file exists or not. Using the DNLC can be dangerous in
2146 * this case when making a decision regarding existence.
2147 */
2148 } else {
2149 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0);
2150 }
2151 if (!error) {
2152 if (exclusive == EXCL)
2153 error = EEXIST;
2154 else if (vp->v_type == VDIR && (mode & VWRITE))
2155 error = EISDIR;
2156 else {
2157 /*
2158 * If vnode is a device, create special vnode.
2159 */
2160 if (IS_DEVVP(vp)) {
2161 tempvp = vp;
2162 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2163 VN_RELE(tempvp);
2164 }
2165 if (!(error = VOP_ACCESS(vp, mode, 0, cr))) {
2166 if ((vattr.va_mask & AT_SIZE) &&
2167 vp->v_type == VREG) {
2168 rp = VTOR(vp);
2169 /*
2170 * Check here for large file handled
2171 * by LF-unaware process (as
2172 * ufs_create() does)
2173 */
2174 if (!(lfaware & FOFFMAX)) {
2175 mutex_enter(&rp->r_statelock);
2176 if (rp->r_size > MAXOFF32_T)
2177 error = EOVERFLOW;
2178 mutex_exit(&rp->r_statelock);
2179 }
2180 if (!error) {
2181 vattr.va_mask = AT_SIZE;
2182 error = nfs3setattr(vp,
2183 &vattr, 0, cr);
2184 }
2185 }
2186 }
2187 }
2188 nfs_rw_exit(&drp->r_rwlock);
2189 if (error) {
2190 VN_RELE(vp);
2191 } else
2192 *vpp = vp;
2193 return (error);
2194 }
2195
2196 dnlc_remove(dvp, nm);
2197
2198 /*
2199 * Decide what the group-id of the created file should be.
2200 * Set it in attribute list as advisory...
2201 */
2202 error = setdirgid(dvp, &vattr.va_gid, cr);
2203 if (error) {
2204 nfs_rw_exit(&drp->r_rwlock);
2205 return (error);
2206 }
2207 vattr.va_mask |= AT_GID;
2208
2209 ASSERT(vattr.va_mask & AT_TYPE);
2210 if (vattr.va_type == VREG) {
2211 ASSERT(vattr.va_mask & AT_MODE);
2212 if (MANDMODE(vattr.va_mode)) {
2213 nfs_rw_exit(&drp->r_rwlock);
2214 return (EACCES);
2215 }
2216 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr,
2217 lfaware);
2218 /*
2219 * If this is not an exclusive create, then the CREATE
2220 * request will be made with the GUARDED mode set. This
2221 * means that the server will return EEXIST if the file
2222 * exists. The file could exist because of a retransmitted
2223 * request. In this case, we recover by starting over and
2224 * checking to see whether the file exists. This second
2225 * time through it should and a CREATE request will not be
2226 * sent.
2227 *
2228 * This handles the problem of a dangling CREATE request
2229 * which contains attributes which indicate that the file
2230 * should be truncated. This retransmitted request could
2231 * possibly truncate valid data in the file if not caught
2232 * by the duplicate request mechanism on the server or if
2233 * not caught by other means. The scenario is:
2234 *
2235 * Client transmits CREATE request with size = 0
2236 * Client times out, retransmits request.
2237 * Response to the first request arrives from the server
2238 * and the client proceeds on.
2239 * Client writes data to the file.
2240 * The server now processes retransmitted CREATE request
2241 * and truncates file.
2242 *
2243 * The use of the GUARDED CREATE request prevents this from
2244 * happening because the retransmitted CREATE would fail
2245 * with EEXIST and would not truncate the file.
2246 */
2247 if (error == EEXIST && exclusive == NONEXCL) {
2248 #ifdef DEBUG
2249 nfs3_create_misses++;
2250 #endif
2251 goto top;
2252 }
2253 nfs_rw_exit(&drp->r_rwlock);
2254 return (error);
2255 }
2256 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
2257 nfs_rw_exit(&drp->r_rwlock);
2258 return (error);
2259 }
2260
2261 /* ARGSUSED */
2262 static int
2263 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2264 int mode, vnode_t **vpp, cred_t *cr, int lfaware)
2265 {
2266 int error;
2267 CREATE3args args;
2268 CREATE3res res;
2269 int douprintf;
2270 vnode_t *vp;
2271 struct vattr vattr;
2272 nfstime3 *verfp;
2273 rnode_t *rp;
2274 timestruc_t now;
2275 hrtime_t t;
2276
2277 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2278 setdiropargs3(&args.where, nm, dvp);
2279 if (exclusive == EXCL) {
2280 args.how.mode = EXCLUSIVE;
2281 /*
2282 * Construct the create verifier. This verifier needs
2283 * to be unique between different clients. It also needs
2284 * to vary for each exclusive create request generated
2285 * from the client to the server.
2286 *
2287 * The first attempt is made to use the hostid and a
2288 * unique number on the client. If the hostid has not
2289 * been set, the high resolution time that the exclusive
2290 * create request is being made is used. This will work
2291 * unless two different clients, both with the hostid
2292 * not set, attempt an exclusive create request on the
2293 * same file, at exactly the same clock time. The
2294 * chances of this happening seem small enough to be
2295 * reasonable.
2296 */
2297 verfp = (nfstime3 *)&args.how.createhow3_u.verf;
2298 verfp->seconds = nfs_atoi(hw_serial);
2299 if (verfp->seconds != 0)
2300 verfp->nseconds = newnum();
2301 else {
2302 gethrestime(&now);
2303 verfp->seconds = now.tv_sec;
2304 verfp->nseconds = now.tv_nsec;
2305 }
2306 /*
2307 * Since the server will use this value for the mtime,
2308 * make sure that it can't overflow. Zero out the MSB.
2309 * The actual value does not matter here, only its uniqeness.
2310 */
2311 verfp->seconds %= INT32_MAX;
2312 } else {
2313 /*
2314 * Issue the non-exclusive create in guarded mode. This
2315 * may result in some false EEXIST responses for
2316 * retransmitted requests, but these will be handled at
2317 * a higher level. By using GUARDED, duplicate requests
2318 * to do file truncation and possible access problems
2319 * can be avoided.
2320 */
2321 args.how.mode = GUARDED;
2322 error = vattr_to_sattr3(va,
2323 &args.how.createhow3_u.obj_attributes);
2324 if (error) {
2325 /* req time field(s) overflow - return immediately */
2326 return (error);
2327 }
2328 }
2329
2330 douprintf = 1;
2331
2332 t = gethrtime();
2333
2334 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE,
2335 xdr_CREATE3args, (caddr_t)&args,
2336 xdr_CREATE3res, (caddr_t)&res, cr,
2337 &douprintf, &res.status, 0, NULL);
2338
2339 if (error) {
2340 PURGE_ATTRCACHE(dvp);
2341 return (error);
2342 }
2343
2344 error = geterrno3(res.status);
2345 if (!error) {
2346 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2347 if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2348 nfs_purge_rddir_cache(dvp);
2349
2350 /*
2351 * On exclusive create the times need to be explicitly
2352 * set to clear any potential verifier that may be stored
2353 * in one of these fields (see comment below). This
2354 * is done here to cover the case where no post op attrs
2355 * were returned or a 'invalid' time was returned in
2356 * the attributes.
2357 */
2358 if (exclusive == EXCL)
2359 va->va_mask |= (AT_MTIME | AT_ATIME);
2360
2361 if (!res.resok.obj.handle_follows) {
2362 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2363 if (error)
2364 return (error);
2365 } else {
2366 if (res.resok.obj_attributes.attributes) {
2367 vp = makenfs3node(&res.resok.obj.handle,
2368 &res.resok.obj_attributes.attr,
2369 dvp->v_vfsp, t, cr, NULL, NULL);
2370 } else {
2371 vp = makenfs3node(&res.resok.obj.handle, NULL,
2372 dvp->v_vfsp, t, cr, NULL, NULL);
2373
2374 /*
2375 * On an exclusive create, it is possible
2376 * that attributes were returned but those
2377 * postop attributes failed to decode
2378 * properly. If this is the case,
2379 * then most likely the atime or mtime
2380 * were invalid for our client; this
2381 * is caused by the server storing the
2382 * create verifier in one of the time
2383 * fields(most likely mtime).
2384 * So... we are going to setattr just the
2385 * atime/mtime to clear things up.
2386 */
2387 if (exclusive == EXCL) {
2388 if (error =
2389 nfs3excl_create_settimes(vp,
2390 va, cr)) {
2391 /*
2392 * Setting the times failed.
2393 * Remove the file and return
2394 * the error.
2395 */
2396 VN_RELE(vp);
2397 (void) nfs3_remove(dvp,
2398 nm, cr);
2399 return (error);
2400 }
2401 }
2402
2403 /*
2404 * This handles the non-exclusive case
2405 * and the exclusive case where no post op
2406 * attrs were returned.
2407 */
2408 if (vp->v_type == VNON) {
2409 vattr.va_mask = AT_TYPE;
2410 error = nfs3getattr(vp, &vattr, cr);
2411 if (error) {
2412 VN_RELE(vp);
2413 return (error);
2414 }
2415 vp->v_type = vattr.va_type;
2416 }
2417 }
2418 dnlc_update(dvp, nm, vp);
2419 }
2420
2421 rp = VTOR(vp);
2422
2423 /*
2424 * Check here for large file handled by
2425 * LF-unaware process (as ufs_create() does)
2426 */
2427 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG &&
2428 !(lfaware & FOFFMAX)) {
2429 mutex_enter(&rp->r_statelock);
2430 if (rp->r_size > MAXOFF32_T) {
2431 mutex_exit(&rp->r_statelock);
2432 VN_RELE(vp);
2433 return (EOVERFLOW);
2434 }
2435 mutex_exit(&rp->r_statelock);
2436 }
2437
2438 if (exclusive == EXCL &&
2439 (va->va_mask & ~(AT_GID | AT_SIZE))) {
2440 /*
2441 * If doing an exclusive create, then generate
2442 * a SETATTR to set the initial attributes.
2443 * Try to set the mtime and the atime to the
2444 * server's current time. It is somewhat
2445 * expected that these fields will be used to
2446 * store the exclusive create cookie. If not,
2447 * server implementors will need to know that
2448 * a SETATTR will follow an exclusive create
2449 * and the cookie should be destroyed if
2450 * appropriate. This work may have been done
2451 * earlier in this function if post op attrs
2452 * were not available.
2453 *
2454 * The AT_GID and AT_SIZE bits are turned off
2455 * so that the SETATTR request will not attempt
2456 * to process these. The gid will be set
2457 * separately if appropriate. The size is turned
2458 * off because it is assumed that a new file will
2459 * be created empty and if the file wasn't empty,
2460 * then the exclusive create will have failed
2461 * because the file must have existed already.
2462 * Therefore, no truncate operation is needed.
2463 */
2464 va->va_mask &= ~(AT_GID | AT_SIZE);
2465 error = nfs3setattr(vp, va, 0, cr);
2466 if (error) {
2467 /*
2468 * Couldn't correct the attributes of
2469 * the newly created file and the
2470 * attributes are wrong. Remove the
2471 * file and return an error to the
2472 * application.
2473 */
2474 VN_RELE(vp);
2475 (void) nfs3_remove(dvp, nm, cr);
2476 return (error);
2477 }
2478 }
2479
2480 if (va->va_gid != rp->r_attr.va_gid) {
2481 /*
2482 * If the gid on the file isn't right, then
2483 * generate a SETATTR to attempt to change
2484 * it. This may or may not work, depending
2485 * upon the server's semantics for allowing
2486 * file ownership changes.
2487 */
2488 va->va_mask = AT_GID;
2489 (void) nfs3setattr(vp, va, 0, cr);
2490 }
2491
2492 /*
2493 * If vnode is a device create special vnode
2494 */
2495 if (IS_DEVVP(vp)) {
2496 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2497 VN_RELE(vp);
2498 } else
2499 *vpp = vp;
2500 } else {
2501 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2502 PURGE_STALE_FH(error, dvp, cr);
2503 }
2504
2505 return (error);
2506 }
2507
2508 /*
2509 * Special setattr function to take care of rest of atime/mtime
2510 * after successful exclusive create. This function exists to avoid
2511 * handling attributes from the server; exclusive the atime/mtime fields
2512 * may be 'invalid' in client's view and therefore can not be trusted.
2513 */
2514 static int
2515 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr)
2516 {
2517 int error;
2518 uint_t mask;
2519 SETATTR3args args;
2520 SETATTR3res res;
2521 int douprintf;
2522 rnode_t *rp;
2523 hrtime_t t;
2524
2525 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
2526 /* save the caller's mask so that it can be reset later */
2527 mask = vap->va_mask;
2528
2529 rp = VTOR(vp);
2530
2531 args.object = *RTOFH3(rp);
2532 args.guard.check = FALSE;
2533
2534 /* Use the mask to initialize the arguments */
2535 vap->va_mask = 0;
2536 error = vattr_to_sattr3(vap, &args.new_attributes);
2537
2538 /* We want to set just atime/mtime on this request */
2539 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
2540 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
2541
2542 douprintf = 1;
2543
2544 t = gethrtime();
2545
2546 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
2547 xdr_SETATTR3args, (caddr_t)&args,
2548 xdr_SETATTR3res, (caddr_t)&res, cr,
2549 &douprintf, &res.status, 0, NULL);
2550
2551 if (error) {
2552 vap->va_mask = mask;
2553 return (error);
2554 }
2555
2556 error = geterrno3(res.status);
2557 if (!error) {
2558 /*
2559 * It is important to pick up the attributes.
2560 * Since this is the exclusive create path, the
2561 * attributes on the initial create were ignored
2562 * and we need these to have the correct info.
2563 */
2564 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
2565 /*
2566 * No need to do the atime/mtime work again so clear
2567 * the bits.
2568 */
2569 mask &= ~(AT_ATIME | AT_MTIME);
2570 } else {
2571 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
2572 }
2573
2574 vap->va_mask = mask;
2575
2576 return (error);
2577 }
2578
2579 /* ARGSUSED */
2580 static int
2581 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2582 int mode, vnode_t **vpp, cred_t *cr)
2583 {
2584 int error;
2585 MKNOD3args args;
2586 MKNOD3res res;
2587 int douprintf;
2588 vnode_t *vp;
2589 struct vattr vattr;
2590 hrtime_t t;
2591
2592 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2593 switch (va->va_type) {
2594 case VCHR:
2595 case VBLK:
2596 setdiropargs3(&args.where, nm, dvp);
2597 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK;
2598 error = vattr_to_sattr3(va,
2599 &args.what.mknoddata3_u.device.dev_attributes);
2600 if (error) {
2601 /* req time field(s) overflow - return immediately */
2602 return (error);
2603 }
2604 args.what.mknoddata3_u.device.spec.specdata1 =
2605 getmajor(va->va_rdev);
2606 args.what.mknoddata3_u.device.spec.specdata2 =
2607 getminor(va->va_rdev);
2608 break;
2609
2610 case VFIFO:
2611 case VSOCK:
2612 setdiropargs3(&args.where, nm, dvp);
2613 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK;
2614 error = vattr_to_sattr3(va,
2615 &args.what.mknoddata3_u.pipe_attributes);
2616 if (error) {
2617 /* req time field(s) overflow - return immediately */
2618 return (error);
2619 }
2620 break;
2621
2622 default:
2623 return (EINVAL);
2624 }
2625
2626 douprintf = 1;
2627
2628 t = gethrtime();
2629
2630 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD,
2631 xdr_MKNOD3args, (caddr_t)&args,
2632 xdr_MKNOD3res, (caddr_t)&res, cr,
2633 &douprintf, &res.status, 0, NULL);
2634
2635 if (error) {
2636 PURGE_ATTRCACHE(dvp);
2637 return (error);
2638 }
2639
2640 error = geterrno3(res.status);
2641 if (!error) {
2642 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2643 if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2644 nfs_purge_rddir_cache(dvp);
2645
2646 if (!res.resok.obj.handle_follows) {
2647 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2648 if (error)
2649 return (error);
2650 } else {
2651 if (res.resok.obj_attributes.attributes) {
2652 vp = makenfs3node(&res.resok.obj.handle,
2653 &res.resok.obj_attributes.attr,
2654 dvp->v_vfsp, t, cr, NULL, NULL);
2655 } else {
2656 vp = makenfs3node(&res.resok.obj.handle, NULL,
2657 dvp->v_vfsp, t, cr, NULL, NULL);
2658 if (vp->v_type == VNON) {
2659 vattr.va_mask = AT_TYPE;
2660 error = nfs3getattr(vp, &vattr, cr);
2661 if (error) {
2662 VN_RELE(vp);
2663 return (error);
2664 }
2665 vp->v_type = vattr.va_type;
2666 }
2667
2668 }
2669 dnlc_update(dvp, nm, vp);
2670 }
2671
2672 if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
2673 va->va_mask = AT_GID;
2674 (void) nfs3setattr(vp, va, 0, cr);
2675 }
2676
2677 /*
2678 * If vnode is a device create special vnode
2679 */
2680 if (IS_DEVVP(vp)) {
2681 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2682 VN_RELE(vp);
2683 } else
2684 *vpp = vp;
2685 } else {
2686 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2687 PURGE_STALE_FH(error, dvp, cr);
2688 }
2689 return (error);
2690 }
2691
2692 /*
2693 * Weirdness: if the vnode to be removed is open
2694 * we rename it instead of removing it and nfs_inactive
2695 * will remove the new name.
2696 */
2697 static int
2698 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr)
2699 {
2700 int error;
2701 REMOVE3args args;
2702 REMOVE3res res;
2703 vnode_t *vp;
2704 char *tmpname;
2705 int douprintf;
2706 rnode_t *rp;
2707 rnode_t *drp;
2708 hrtime_t t;
2709
2710 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2711 return (EPERM);
2712 drp = VTOR(dvp);
2713 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2714 return (EINTR);
2715
2716 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2717 if (error) {
2718 nfs_rw_exit(&drp->r_rwlock);
2719 return (error);
2720 }
2721
2722 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) {
2723 VN_RELE(vp);
2724 nfs_rw_exit(&drp->r_rwlock);
2725 return (EPERM);
2726 }
2727
2728 /*
2729 * First just remove the entry from the name cache, as it
2730 * is most likely the only entry for this vp.
2731 */
2732 dnlc_remove(dvp, nm);
2733
2734 /*
2735 * If the file has a v_count > 1 then there may be more than one
2736 * entry in the name cache due multiple links or an open file,
2737 * but we don't have the real reference count so flush all
2738 * possible entries.
2739 */
2740 if (vp->v_count > 1)
2741 dnlc_purge_vp(vp);
2742
2743 /*
2744 * Now we have the real reference count on the vnode
2745 */
2746 rp = VTOR(vp);
2747 mutex_enter(&rp->r_statelock);
2748 if (vp->v_count > 1 &&
2749 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
2750 mutex_exit(&rp->r_statelock);
2751 tmpname = newname();
2752 error = nfs3rename(dvp, nm, dvp, tmpname, cr);
2753 if (error)
2754 kmem_free(tmpname, MAXNAMELEN);
2755 else {
2756 mutex_enter(&rp->r_statelock);
2757 if (rp->r_unldvp == NULL) {
2758 VN_HOLD(dvp);
2759 rp->r_unldvp = dvp;
2760 if (rp->r_unlcred != NULL)
2761 crfree(rp->r_unlcred);
2762 crhold(cr);
2763 rp->r_unlcred = cr;
2764 rp->r_unlname = tmpname;
2765 } else {
2766 kmem_free(rp->r_unlname, MAXNAMELEN);
2767 rp->r_unlname = tmpname;
2768 }
2769 mutex_exit(&rp->r_statelock);
2770 }
2771 } else {
2772 mutex_exit(&rp->r_statelock);
2773 /*
2774 * We need to flush any dirty pages which happen to
2775 * be hanging around before removing the file. This
2776 * shouldn't happen very often and mostly on file
2777 * systems mounted "nocto".
2778 */
2779 if (vn_has_cached_data(vp) &&
2780 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
2781 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr);
2782 if (error && (error == ENOSPC || error == EDQUOT)) {
2783 mutex_enter(&rp->r_statelock);
2784 if (!rp->r_error)
2785 rp->r_error = error;
2786 mutex_exit(&rp->r_statelock);
2787 }
2788 }
2789
2790 setdiropargs3(&args.object, nm, dvp);
2791
2792 douprintf = 1;
2793
2794 t = gethrtime();
2795
2796 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE,
2797 xdr_diropargs3, (caddr_t)&args,
2798 xdr_REMOVE3res, (caddr_t)&res, cr,
2799 &douprintf, &res.status, 0, NULL);
2800
2801 /*
2802 * The xattr dir may be gone after last attr is removed,
2803 * so flush it from dnlc.
2804 */
2805 if (dvp->v_flag & V_XATTRDIR)
2806 dnlc_purge_vp(dvp);
2807
2808 PURGE_ATTRCACHE(vp);
2809
2810 if (error) {
2811 PURGE_ATTRCACHE(dvp);
2812 } else {
2813 error = geterrno3(res.status);
2814 if (!error) {
2815 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t,
2816 cr);
2817 if (HAVE_RDDIR_CACHE(drp))
2818 nfs_purge_rddir_cache(dvp);
2819 } else {
2820 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc,
2821 t, cr);
2822 PURGE_STALE_FH(error, dvp, cr);
2823 }
2824 }
2825 }
2826
2827 VN_RELE(vp);
2828
2829 nfs_rw_exit(&drp->r_rwlock);
2830
2831 return (error);
2832 }
2833
2834 static int
2835 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr)
2836 {
2837 int error;
2838 LINK3args args;
2839 LINK3res res;
2840 vnode_t *realvp;
2841 int douprintf;
2842 mntinfo_t *mi;
2843 rnode_t *tdrp;
2844 hrtime_t t;
2845
2846 if (nfs_zone() != VTOMI(tdvp)->mi_zone)
2847 return (EPERM);
2848 if (VOP_REALVP(svp, &realvp) == 0)
2849 svp = realvp;
2850
2851 mi = VTOMI(svp);
2852
2853 if (!(mi->mi_flags & MI_LINK))
2854 return (EOPNOTSUPP);
2855
2856 args.file = *VTOFH3(svp);
2857 setdiropargs3(&args.link, tnm, tdvp);
2858
2859 tdrp = VTOR(tdvp);
2860 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp)))
2861 return (EINTR);
2862
2863 dnlc_remove(tdvp, tnm);
2864
2865 douprintf = 1;
2866
2867 t = gethrtime();
2868
2869 error = rfs3call(mi, NFSPROC3_LINK,
2870 xdr_LINK3args, (caddr_t)&args,
2871 xdr_LINK3res, (caddr_t)&res, cr,
2872 &douprintf, &res.status, 0, NULL);
2873
2874 if (error) {
2875 PURGE_ATTRCACHE(tdvp);
2876 PURGE_ATTRCACHE(svp);
2877 nfs_rw_exit(&tdrp->r_rwlock);
2878 return (error);
2879 }
2880
2881 error = geterrno3(res.status);
2882
2883 if (!error) {
2884 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr);
2885 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr);
2886 if (HAVE_RDDIR_CACHE(tdrp))
2887 nfs_purge_rddir_cache(tdvp);
2888 dnlc_update(tdvp, tnm, svp);
2889 } else {
2890 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t,
2891 cr);
2892 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr);
2893 if (error == EOPNOTSUPP) {
2894 mutex_enter(&mi->mi_lock);
2895 mi->mi_flags &= ~MI_LINK;
2896 mutex_exit(&mi->mi_lock);
2897 }
2898 }
2899
2900 nfs_rw_exit(&tdrp->r_rwlock);
2901
2902 return (error);
2903 }
2904
2905 static int
2906 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr)
2907 {
2908 vnode_t *realvp;
2909
2910 if (nfs_zone() != VTOMI(odvp)->mi_zone)
2911 return (EPERM);
2912 if (VOP_REALVP(ndvp, &realvp) == 0)
2913 ndvp = realvp;
2914
2915 return (nfs3rename(odvp, onm, ndvp, nnm, cr));
2916 }
2917
2918 /*
2919 * nfs3rename does the real work of renaming in NFS Version 3.
2920 */
2921 static int
2922 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr)
2923 {
2924 int error;
2925 RENAME3args args;
2926 RENAME3res res;
2927 int douprintf;
2928 vnode_t *nvp;
2929 vnode_t *ovp = NULL;
2930 char *tmpname;
2931 rnode_t *rp;
2932 rnode_t *odrp;
2933 rnode_t *ndrp;
2934 hrtime_t t;
2935
2936 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone);
2937
2938 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 ||
2939 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0)
2940 return (EINVAL);
2941
2942 odrp = VTOR(odvp);
2943 ndrp = VTOR(ndvp);
2944 if ((intptr_t)odrp < (intptr_t)ndrp) {
2945 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp)))
2946 return (EINTR);
2947 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) {
2948 nfs_rw_exit(&odrp->r_rwlock);
2949 return (EINTR);
2950 }
2951 } else {
2952 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp)))
2953 return (EINTR);
2954 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) {
2955 nfs_rw_exit(&ndrp->r_rwlock);
2956 return (EINTR);
2957 }
2958 }
2959
2960 /*
2961 * Lookup the target file. If it exists, it needs to be
2962 * checked to see whether it is a mount point and whether
2963 * it is active (open).
2964 */
2965 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0);
2966 if (!error) {
2967 /*
2968 * If this file has been mounted on, then just
2969 * return busy because renaming to it would remove
2970 * the mounted file system from the name space.
2971 */
2972 if (vn_mountedvfs(nvp) != NULL) {
2973 VN_RELE(nvp);
2974 nfs_rw_exit(&odrp->r_rwlock);
2975 nfs_rw_exit(&ndrp->r_rwlock);
2976 return (EBUSY);
2977 }
2978
2979 /*
2980 * Purge the name cache of all references to this vnode
2981 * so that we can check the reference count to infer
2982 * whether it is active or not.
2983 */
2984 /*
2985 * First just remove the entry from the name cache, as it
2986 * is most likely the only entry for this vp.
2987 */
2988 dnlc_remove(ndvp, nnm);
2989 /*
2990 * If the file has a v_count > 1 then there may be more
2991 * than one entry in the name cache due multiple links
2992 * or an open file, but we don't have the real reference
2993 * count so flush all possible entries.
2994 */
2995 if (nvp->v_count > 1)
2996 dnlc_purge_vp(nvp);
2997
2998 /*
2999 * If the vnode is active and is not a directory,
3000 * arrange to rename it to a
3001 * temporary file so that it will continue to be
3002 * accessible. This implements the "unlink-open-file"
3003 * semantics for the target of a rename operation.
3004 * Before doing this though, make sure that the
3005 * source and target files are not already the same.
3006 */
3007 if (nvp->v_count > 1 && nvp->v_type != VDIR) {
3008 /*
3009 * Lookup the source name.
3010 */
3011 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL,
3012 cr, 0);
3013
3014 /*
3015 * The source name *should* already exist.
3016 */
3017 if (error) {
3018 VN_RELE(nvp);
3019 nfs_rw_exit(&odrp->r_rwlock);
3020 nfs_rw_exit(&ndrp->r_rwlock);
3021 return (error);
3022 }
3023
3024 /*
3025 * Compare the two vnodes. If they are the same,
3026 * just release all held vnodes and return success.
3027 */
3028 if (ovp == nvp) {
3029 VN_RELE(ovp);
3030 VN_RELE(nvp);
3031 nfs_rw_exit(&odrp->r_rwlock);
3032 nfs_rw_exit(&ndrp->r_rwlock);
3033 return (0);
3034 }
3035
3036 /*
3037 * Can't mix and match directories and non-
3038 * directories in rename operations. We already
3039 * know that the target is not a directory. If
3040 * the source is a directory, return an error.
3041 */
3042 if (ovp->v_type == VDIR) {
3043 VN_RELE(ovp);
3044 VN_RELE(nvp);
3045 nfs_rw_exit(&odrp->r_rwlock);
3046 nfs_rw_exit(&ndrp->r_rwlock);
3047 return (ENOTDIR);
3048 }
3049
3050 /*
3051 * The target file exists, is not the same as
3052 * the source file, and is active. Link it
3053 * to a temporary filename to avoid having
3054 * the server removing the file completely.
3055 */
3056 tmpname = newname();
3057 error = nfs3_link(ndvp, nvp, tmpname, cr);
3058 if (error == EOPNOTSUPP) {
3059 error = nfs3_rename(ndvp, nnm, ndvp, tmpname,
3060 cr);
3061 }
3062 if (error) {
3063 kmem_free(tmpname, MAXNAMELEN);
3064 VN_RELE(ovp);
3065 VN_RELE(nvp);
3066 nfs_rw_exit(&odrp->r_rwlock);
3067 nfs_rw_exit(&ndrp->r_rwlock);
3068 return (error);
3069 }
3070 rp = VTOR(nvp);
3071 mutex_enter(&rp->r_statelock);
3072 if (rp->r_unldvp == NULL) {
3073 VN_HOLD(ndvp);
3074 rp->r_unldvp = ndvp;
3075 if (rp->r_unlcred != NULL)
3076 crfree(rp->r_unlcred);
3077 crhold(cr);
3078 rp->r_unlcred = cr;
3079 rp->r_unlname = tmpname;
3080 } else {
3081 kmem_free(rp->r_unlname, MAXNAMELEN);
3082 rp->r_unlname = tmpname;
3083 }
3084 mutex_exit(&rp->r_statelock);
3085 }
3086
3087 VN_RELE(nvp);
3088 }
3089
3090 if (ovp == NULL) {
3091 /*
3092 * When renaming directories to be a subdirectory of a
3093 * different parent, the dnlc entry for ".." will no
3094 * longer be valid, so it must be removed.
3095 *
3096 * We do a lookup here to determine whether we are renaming
3097 * a directory and we need to check if we are renaming
3098 * an unlinked file. This might have already been done
3099 * in previous code, so we check ovp == NULL to avoid
3100 * doing it twice.
3101 */
3102
3103 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0);
3104 /*
3105 * The source name *should* already exist.
3106 */
3107 if (error) {
3108 nfs_rw_exit(&odrp->r_rwlock);
3109 nfs_rw_exit(&ndrp->r_rwlock);
3110 return (error);
3111 }
3112 ASSERT(ovp != NULL);
3113 }
3114
3115 dnlc_remove(odvp, onm);
3116 dnlc_remove(ndvp, nnm);
3117
3118 setdiropargs3(&args.from, onm, odvp);
3119 setdiropargs3(&args.to, nnm, ndvp);
3120
3121 douprintf = 1;
3122
3123 t = gethrtime();
3124
3125 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME,
3126 xdr_RENAME3args, (caddr_t)&args,
3127 xdr_RENAME3res, (caddr_t)&res, cr,
3128 &douprintf, &res.status, 0, NULL);
3129
3130 if (error) {
3131 PURGE_ATTRCACHE(odvp);
3132 PURGE_ATTRCACHE(ndvp);
3133 VN_RELE(ovp);
3134 nfs_rw_exit(&odrp->r_rwlock);
3135 nfs_rw_exit(&ndrp->r_rwlock);
3136 return (error);
3137 }
3138
3139 error = geterrno3(res.status);
3140
3141 if (!error) {
3142 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr);
3143 if (HAVE_RDDIR_CACHE(odrp))
3144 nfs_purge_rddir_cache(odvp);
3145 if (ndvp != odvp) {
3146 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr);
3147 if (HAVE_RDDIR_CACHE(ndrp))
3148 nfs_purge_rddir_cache(ndvp);
3149 }
3150 /*
3151 * when renaming directories to be a subdirectory of a
3152 * different parent, the dnlc entry for ".." will no
3153 * longer be valid, so it must be removed
3154 */
3155 rp = VTOR(ovp);
3156 if (ndvp != odvp) {
3157 if (ovp->v_type == VDIR) {
3158 dnlc_remove(ovp, "..");
3159 if (HAVE_RDDIR_CACHE(rp))
3160 nfs_purge_rddir_cache(ovp);
3161 }
3162 }
3163
3164 /*
3165 * If we are renaming the unlinked file, update the
3166 * r_unldvp and r_unlname as needed.
3167 */
3168 mutex_enter(&rp->r_statelock);
3169 if (rp->r_unldvp != NULL) {
3170 if (strcmp(rp->r_unlname, onm) == 0) {
3171 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
3172 rp->r_unlname[MAXNAMELEN - 1] = '\0';
3173
3174 if (ndvp != rp->r_unldvp) {
3175 VN_RELE(rp->r_unldvp);
3176 rp->r_unldvp = ndvp;
3177 VN_HOLD(ndvp);
3178 }
3179 }
3180 }
3181 mutex_exit(&rp->r_statelock);
3182 } else {
3183 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr);
3184 if (ndvp != odvp) {
3185 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t,
3186 cr);
3187 }
3188 /*
3189 * System V defines rename to return EEXIST, not
3190 * ENOTEMPTY if the target directory is not empty.
3191 * Over the wire, the error is NFSERR_ENOTEMPTY
3192 * which geterrno maps to ENOTEMPTY.
3193 */
3194 if (error == ENOTEMPTY)
3195 error = EEXIST;
3196 }
3197
3198 VN_RELE(ovp);
3199
3200 nfs_rw_exit(&odrp->r_rwlock);
3201 nfs_rw_exit(&ndrp->r_rwlock);
3202
3203 return (error);
3204 }
3205
3206 static int
3207 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr)
3208 {
3209 int error;
3210 MKDIR3args args;
3211 MKDIR3res res;
3212 int douprintf;
3213 struct vattr vattr;
3214 vnode_t *vp;
3215 rnode_t *drp;
3216 hrtime_t t;
3217
3218 if (nfs_zone() != VTOMI(dvp)->mi_zone)
3219 return (EPERM);
3220 setdiropargs3(&args.where, nm, dvp);
3221
3222 /*
3223 * Decide what the group-id and set-gid bit of the created directory
3224 * should be. May have to do a setattr to get the gid right.
3225 */
3226 error = setdirgid(dvp, &va->va_gid, cr);
3227 if (error)
3228 return (error);
3229 error = setdirmode(dvp, &va->va_mode, cr);
3230 if (error)
3231 return (error);
3232 va->va_mask |= AT_MODE|AT_GID;
3233
3234 error = vattr_to_sattr3(va, &args.attributes);
3235 if (error) {
3236 /* req time field(s) overflow - return immediately */
3237 return (error);
3238 }
3239
3240 drp = VTOR(dvp);
3241 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3242 return (EINTR);
3243
3244 dnlc_remove(dvp, nm);
3245
3246 douprintf = 1;
3247
3248 t = gethrtime();
3249
3250 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR,
3251 xdr_MKDIR3args, (caddr_t)&args,
3252 xdr_MKDIR3res, (caddr_t)&res, cr,
3253 &douprintf, &res.status, 0, NULL);
3254
3255 if (error) {
3256 PURGE_ATTRCACHE(dvp);
3257 nfs_rw_exit(&drp->r_rwlock);
3258 return (error);
3259 }
3260
3261 error = geterrno3(res.status);
3262 if (!error) {
3263 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3264 if (HAVE_RDDIR_CACHE(drp))
3265 nfs_purge_rddir_cache(dvp);
3266
3267 if (!res.resok.obj.handle_follows) {
3268 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3269 if (error) {
3270 nfs_rw_exit(&drp->r_rwlock);
3271 return (error);
3272 }
3273 } else {
3274 if (res.resok.obj_attributes.attributes) {
3275 vp = makenfs3node(&res.resok.obj.handle,
3276 &res.resok.obj_attributes.attr,
3277 dvp->v_vfsp, t, cr, NULL, NULL);
3278 } else {
3279 vp = makenfs3node(&res.resok.obj.handle, NULL,
3280 dvp->v_vfsp, t, cr, NULL, NULL);
3281 if (vp->v_type == VNON) {
3282 vattr.va_mask = AT_TYPE;
3283 error = nfs3getattr(vp, &vattr, cr);
3284 if (error) {
3285 VN_RELE(vp);
3286 nfs_rw_exit(&drp->r_rwlock);
3287 return (error);
3288 }
3289 vp->v_type = vattr.va_type;
3290 }
3291 }
3292 dnlc_update(dvp, nm, vp);
3293 }
3294 if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
3295 va->va_mask = AT_GID;
3296 (void) nfs3setattr(vp, va, 0, cr);
3297 }
3298 *vpp = vp;
3299 } else {
3300 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3301 PURGE_STALE_FH(error, dvp, cr);
3302 }
3303
3304 nfs_rw_exit(&drp->r_rwlock);
3305
3306 return (error);
3307 }
3308
3309 static int
3310 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr)
3311 {
3312 int error;
3313 RMDIR3args args;
3314 RMDIR3res res;
3315 vnode_t *vp;
3316 int douprintf;
3317 rnode_t *drp;
3318 hrtime_t t;
3319
3320 if (nfs_zone() != VTOMI(dvp)->mi_zone)
3321 return (EPERM);
3322 drp = VTOR(dvp);
3323 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3324 return (EINTR);
3325
3326 /*
3327 * Attempt to prevent a rmdir(".") from succeeding.
3328 */
3329 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3330 if (error) {
3331 nfs_rw_exit(&drp->r_rwlock);
3332 return (error);
3333 }
3334
3335 if (vp == cdir) {
3336 VN_RELE(vp);
3337 nfs_rw_exit(&drp->r_rwlock);
3338 return (EINVAL);
3339 }
3340
3341 setdiropargs3(&args.object, nm, dvp);
3342
3343 /*
3344 * First just remove the entry from the name cache, as it
3345 * is most likely an entry for this vp.
3346 */
3347 dnlc_remove(dvp, nm);
3348
3349 /*
3350 * If there vnode reference count is greater than one, then
3351 * there may be additional references in the DNLC which will
3352 * need to be purged. First, trying removing the entry for
3353 * the parent directory and see if that removes the additional
3354 * reference(s). If that doesn't do it, then use dnlc_purge_vp
3355 * to completely remove any references to the directory which
3356 * might still exist in the DNLC.
3357 */
3358 if (vp->v_count > 1) {
3359 dnlc_remove(vp, "..");
3360 if (vp->v_count > 1)
3361 dnlc_purge_vp(vp);
3362 }
3363
3364 douprintf = 1;
3365
3366 t = gethrtime();
3367
3368 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR,
3369 xdr_diropargs3, (caddr_t)&args,
3370 xdr_RMDIR3res, (caddr_t)&res, cr,
3371 &douprintf, &res.status, 0, NULL);
3372
3373 PURGE_ATTRCACHE(vp);
3374
3375 if (error) {
3376 PURGE_ATTRCACHE(dvp);
3377 VN_RELE(vp);
3378 nfs_rw_exit(&drp->r_rwlock);
3379 return (error);
3380 }
3381
3382 error = geterrno3(res.status);
3383 if (!error) {
3384 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3385 if (HAVE_RDDIR_CACHE(drp))
3386 nfs_purge_rddir_cache(dvp);
3387 if (HAVE_RDDIR_CACHE(VTOR(vp)))
3388 nfs_purge_rddir_cache(vp);
3389 } else {
3390 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3391 PURGE_STALE_FH(error, dvp, cr);
3392 /*
3393 * System V defines rmdir to return EEXIST, not
3394 * ENOTEMPTY if the directory is not empty. Over
3395 * the wire, the error is NFSERR_ENOTEMPTY which
3396 * geterrno maps to ENOTEMPTY.
3397 */
3398 if (error == ENOTEMPTY)
3399 error = EEXIST;
3400 }
3401
3402 VN_RELE(vp);
3403
3404 nfs_rw_exit(&drp->r_rwlock);
3405
3406 return (error);
3407 }
3408
3409 static int
3410 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr)
3411 {
3412 int error;
3413 SYMLINK3args args;
3414 SYMLINK3res res;
3415 int douprintf;
3416 mntinfo_t *mi;
3417 vnode_t *vp;
3418 rnode_t *rp;
3419 char *contents;
3420 rnode_t *drp;
3421 hrtime_t t;
3422
3423 mi = VTOMI(dvp);
3424
3425 if (nfs_zone() != mi->mi_zone)
3426 return (EPERM);
3427 if (!(mi->mi_flags & MI_SYMLINK))
3428 return (EOPNOTSUPP);
3429
3430 setdiropargs3(&args.where, lnm, dvp);
3431 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes);
3432 if (error) {
3433 /* req time field(s) overflow - return immediately */
3434 return (error);
3435 }
3436 args.symlink.symlink_data = tnm;
3437
3438 drp = VTOR(dvp);
3439 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3440 return (EINTR);
3441
3442 dnlc_remove(dvp, lnm);
3443
3444 douprintf = 1;
3445
3446 t = gethrtime();
3447
3448 error = rfs3call(mi, NFSPROC3_SYMLINK,
3449 xdr_SYMLINK3args, (caddr_t)&args,
3450 xdr_SYMLINK3res, (caddr_t)&res, cr,
3451 &douprintf, &res.status, 0, NULL);
3452
3453 if (error) {
3454 PURGE_ATTRCACHE(dvp);
3455 nfs_rw_exit(&drp->r_rwlock);
3456 return (error);
3457 }
3458
3459 error = geterrno3(res.status);
3460 if (!error) {
3461 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3462 if (HAVE_RDDIR_CACHE(drp))
3463 nfs_purge_rddir_cache(dvp);
3464
3465 if (res.resok.obj.handle_follows) {
3466 if (res.resok.obj_attributes.attributes) {
3467 vp = makenfs3node(&res.resok.obj.handle,
3468 &res.resok.obj_attributes.attr,
3469 dvp->v_vfsp, t, cr, NULL, NULL);
3470 } else {
3471 vp = makenfs3node(&res.resok.obj.handle, NULL,
3472 dvp->v_vfsp, t, cr, NULL, NULL);
3473 vp->v_type = VLNK;
3474 vp->v_rdev = 0;
3475 }
3476 dnlc_update(dvp, lnm, vp);
3477 rp = VTOR(vp);
3478 if (nfs3_do_symlink_cache &&
3479 rp->r_symlink.contents == NULL) {
3480
3481 contents = kmem_alloc(MAXPATHLEN,
3482 KM_NOSLEEP);
3483
3484 if (contents != NULL) {
3485 mutex_enter(&rp->r_statelock);
3486 if (rp->r_symlink.contents == NULL) {
3487 rp->r_symlink.len = strlen(tnm);
3488 bcopy(tnm, contents,
3489 rp->r_symlink.len);
3490 rp->r_symlink.contents =
3491 contents;
3492 rp->r_symlink.size = MAXPATHLEN;
3493 mutex_exit(&rp->r_statelock);
3494 } else {
3495 mutex_exit(&rp->r_statelock);
3496 kmem_free((void *)contents,
3497 MAXPATHLEN);
3498 }
3499 }
3500 }
3501 VN_RELE(vp);
3502 }
3503 } else {
3504 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3505 PURGE_STALE_FH(error, dvp, cr);
3506 if (error == EOPNOTSUPP) {
3507 mutex_enter(&mi->mi_lock);
3508 mi->mi_flags &= ~MI_SYMLINK;
3509 mutex_exit(&mi->mi_lock);
3510 }
3511 }
3512
3513 nfs_rw_exit(&drp->r_rwlock);
3514
3515 return (error);
3516 }
3517
3518 #ifdef DEBUG
3519 static int nfs3_readdir_cache_hits = 0;
3520 static int nfs3_readdir_cache_shorts = 0;
3521 static int nfs3_readdir_cache_waits = 0;
3522 static int nfs3_readdir_cache_misses = 0;
3523 static int nfs3_readdir_readahead = 0;
3524 #endif
3525
3526 static int nfs3_shrinkreaddir = 0;
3527
3528 /*
3529 * Read directory entries.
3530 * There are some weird things to look out for here. The uio_loffset
3531 * field is either 0 or it is the offset returned from a previous
3532 * readdir. It is an opaque value used by the server to find the
3533 * correct directory block to read. The count field is the number
3534 * of blocks to read on the server. This is advisory only, the server
3535 * may return only one block's worth of entries. Entries may be compressed
3536 * on the server.
3537 */
3538 static int
3539 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp)
3540 {
3541 int error;
3542 size_t count;
3543 rnode_t *rp;
3544 rddir_cache *rdc;
3545 rddir_cache *nrdc;
3546 rddir_cache *rrdc;
3547 #ifdef DEBUG
3548 int missed;
3549 #endif
3550 int doreadahead;
3551 rddir_cache srdc;
3552 avl_index_t where;
3553
3554 if (nfs_zone() != VTOMI(vp)->mi_zone)
3555 return (EIO);
3556 rp = VTOR(vp);
3557
3558 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
3559
3560 /*
3561 * Make sure that the directory cache is valid.
3562 */
3563 if (HAVE_RDDIR_CACHE(rp)) {
3564 if (nfs_disable_rddir_cache) {
3565 /*
3566 * Setting nfs_disable_rddir_cache in /etc/system
3567 * allows interoperability with servers that do not
3568 * properly update the attributes of directories.
3569 * Any cached information gets purged before an
3570 * access is made to it.
3571 */
3572 nfs_purge_rddir_cache(vp);
3573 } else {
3574 error = nfs3_validate_caches(vp, cr);
3575 if (error)
3576 return (error);
3577 }
3578 }
3579
3580 /*
3581 * It is possible that some servers may not be able to correctly
3582 * handle a large READDIR or READDIRPLUS request due to bugs in
3583 * their implementation. In order to continue to interoperate
3584 * with them, this workaround is provided to limit the maximum
3585 * size of a READDIRPLUS request to 1024. In any case, the request
3586 * size is limited to MAXBSIZE.
3587 */
3588 count = MIN(uiop->uio_iov->iov_len,
3589 nfs3_shrinkreaddir ? 1024 : MAXBSIZE);
3590
3591 nrdc = NULL;
3592 #ifdef DEBUG
3593 missed = 0;
3594 #endif
3595 top:
3596 /*
3597 * Short circuit last readdir which always returns 0 bytes.
3598 * This can be done after the directory has been read through
3599 * completely at least once. This will set r_direof which
3600 * can be used to find the value of the last cookie.
3601 */
3602 mutex_enter(&rp->r_statelock);
3603 if (rp->r_direof != NULL &&
3604 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) {
3605 mutex_exit(&rp->r_statelock);
3606 #ifdef DEBUG
3607 nfs3_readdir_cache_shorts++;
3608 #endif
3609 if (eofp)
3610 *eofp = 1;
3611 if (nrdc != NULL)
3612 rddir_cache_rele(nrdc);
3613 return (0);
3614 }
3615 /*
3616 * Look for a cache entry. Cache entries are identified
3617 * by the NFS cookie value and the byte count requested.
3618 */
3619 srdc.nfs3_cookie = uiop->uio_loffset;
3620 srdc.buflen = count;
3621 rdc = avl_find(&rp->r_dir, &srdc, &where);
3622 if (rdc != NULL) {
3623 rddir_cache_hold(rdc);
3624 /*
3625 * If the cache entry is in the process of being
3626 * filled in, wait until this completes. The
3627 * RDDIRWAIT bit is set to indicate that someone
3628 * is waiting and then the thread currently
3629 * filling the entry is done, it should do a
3630 * cv_broadcast to wakeup all of the threads
3631 * waiting for it to finish.
3632 */
3633 if (rdc->flags & RDDIR) {
3634 nfs_rw_exit(&rp->r_rwlock);
3635 rdc->flags |= RDDIRWAIT;
3636 #ifdef DEBUG
3637 nfs3_readdir_cache_waits++;
3638 #endif
3639 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
3640 /*
3641 * We got interrupted, probably
3642 * the user typed ^C or an alarm
3643 * fired. We free the new entry
3644 * if we allocated one.
3645 */
3646 mutex_exit(&rp->r_statelock);
3647 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3648 RW_READER, FALSE);
3649 rddir_cache_rele(rdc);
3650 if (nrdc != NULL)
3651 rddir_cache_rele(nrdc);
3652 return (EINTR);
3653 }
3654 mutex_exit(&rp->r_statelock);
3655 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3656 RW_READER, FALSE);
3657 rddir_cache_rele(rdc);
3658 goto top;
3659 }
3660 /*
3661 * Check to see if a readdir is required to
3662 * fill the entry. If so, mark this entry
3663 * as being filled, remove our reference,
3664 * and branch to the code to fill the entry.
3665 */
3666 if (rdc->flags & RDDIRREQ) {
3667 rdc->flags &= ~RDDIRREQ;
3668 rdc->flags |= RDDIR;
3669 if (nrdc != NULL)
3670 rddir_cache_rele(nrdc);
3671 nrdc = rdc;
3672 mutex_exit(&rp->r_statelock);
3673 goto bottom;
3674 }
3675 #ifdef DEBUG
3676 if (!missed)
3677 nfs3_readdir_cache_hits++;
3678 #endif
3679 /*
3680 * If an error occurred while attempting
3681 * to fill the cache entry, just return it.
3682 */
3683 if (rdc->error) {
3684 error = rdc->error;
3685 mutex_exit(&rp->r_statelock);
3686 rddir_cache_rele(rdc);
3687 if (nrdc != NULL)
3688 rddir_cache_rele(nrdc);
3689 return (error);
3690 }
3691
3692 /*
3693 * The cache entry is complete and good,
3694 * copyout the dirent structs to the calling
3695 * thread.
3696 */
3697 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop);
3698
3699 /*
3700 * If no error occurred during the copyout,
3701 * update the offset in the uio struct to
3702 * contain the value of the next cookie
3703 * and set the eof value appropriately.
3704 */
3705 if (!error) {
3706 uiop->uio_loffset = rdc->nfs3_ncookie;
3707 if (eofp)
3708 *eofp = rdc->eof;
3709 }
3710
3711 /*
3712 * Decide whether to do readahead.
3713 *
3714 * Don't if have already read to the end of
3715 * directory. There is nothing more to read.
3716 *
3717 * Don't if the application is not doing
3718 * lookups in the directory. The readahead
3719 * is only effective if the application can
3720 * be doing work while an async thread is
3721 * handling the over the wire request.
3722 */
3723 if (rdc->eof) {
3724 rp->r_direof = rdc;
3725 doreadahead = FALSE;
3726 } else if (!(rp->r_flags & RLOOKUP))
3727 doreadahead = FALSE;
3728 else
3729 doreadahead = TRUE;
3730
3731 if (!doreadahead) {
3732 mutex_exit(&rp->r_statelock);
3733 rddir_cache_rele(rdc);
3734 if (nrdc != NULL)
3735 rddir_cache_rele(nrdc);
3736 return (error);
3737 }
3738
3739 /*
3740 * Check to see whether we found an entry
3741 * for the readahead. If so, we don't need
3742 * to do anything further, so free the new
3743 * entry if one was allocated. Otherwise,
3744 * allocate a new entry, add it to the cache,
3745 * and then initiate an asynchronous readdir
3746 * operation to fill it.
3747 */
3748 srdc.nfs3_cookie = rdc->nfs3_ncookie;
3749 srdc.buflen = count;
3750 rrdc = avl_find(&rp->r_dir, &srdc, &where);
3751 if (rrdc != NULL) {
3752 if (nrdc != NULL)
3753 rddir_cache_rele(nrdc);
3754 } else {
3755 if (nrdc != NULL)
3756 rrdc = nrdc;
3757 else {
3758 rrdc = rddir_cache_alloc(KM_NOSLEEP);
3759 }
3760 if (rrdc != NULL) {
3761 rrdc->nfs3_cookie = rdc->nfs3_ncookie;
3762 rrdc->buflen = count;
3763 avl_insert(&rp->r_dir, rrdc, where);
3764 rddir_cache_hold(rrdc);
3765 mutex_exit(&rp->r_statelock);
3766 rddir_cache_rele(rdc);
3767 #ifdef DEBUG
3768 nfs3_readdir_readahead++;
3769 #endif
3770 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir);
3771 return (error);
3772 }
3773 }
3774
3775 mutex_exit(&rp->r_statelock);
3776 rddir_cache_rele(rdc);
3777 return (error);
3778 }
3779
3780 /*
3781 * Didn't find an entry in the cache. Construct a new empty
3782 * entry and link it into the cache. Other processes attempting
3783 * to access this entry will need to wait until it is filled in.
3784 *
3785 * Since kmem_alloc may block, another pass through the cache
3786 * will need to be taken to make sure that another process
3787 * hasn't already added an entry to the cache for this request.
3788 */
3789 if (nrdc == NULL) {
3790 mutex_exit(&rp->r_statelock);
3791 nrdc = rddir_cache_alloc(KM_SLEEP);
3792 nrdc->nfs3_cookie = uiop->uio_loffset;
3793 nrdc->buflen = count;
3794 goto top;
3795 }
3796
3797 /*
3798 * Add this entry to the cache.
3799 */
3800 avl_insert(&rp->r_dir, nrdc, where);
3801 rddir_cache_hold(nrdc);
3802 mutex_exit(&rp->r_statelock);
3803
3804 bottom:
3805 #ifdef DEBUG
3806 missed = 1;
3807 nfs3_readdir_cache_misses++;
3808 #endif
3809 /*
3810 * Do the readdir. This routine decides whether to use
3811 * READDIR or READDIRPLUS.
3812 */
3813 error = do_nfs3readdir(vp, nrdc, cr);
3814
3815 /*
3816 * If this operation failed, just return the error which occurred.
3817 */
3818 if (error != 0)
3819 return (error);
3820
3821 /*
3822 * Since the RPC operation will have taken sometime and blocked
3823 * this process, another pass through the cache will need to be
3824 * taken to find the correct cache entry. It is possible that
3825 * the correct cache entry will not be there (although one was
3826 * added) because the directory changed during the RPC operation
3827 * and the readdir cache was flushed. In this case, just start
3828 * over. It is hoped that this will not happen too often... :-)
3829 */
3830 nrdc = NULL;
3831 goto top;
3832 /* NOTREACHED */
3833 }
3834
3835 static int
3836 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
3837 {
3838 int error;
3839 rnode_t *rp;
3840 mntinfo_t *mi;
3841
3842 rp = VTOR(vp);
3843 mi = VTOMI(vp);
3844 ASSERT(nfs_zone() == mi->mi_zone);
3845 /*
3846 * Issue the proper request.
3847 *
3848 * If the server does not support READDIRPLUS, then use READDIR.
3849 *
3850 * Otherwise --
3851 * Issue a READDIRPLUS if reading to fill an empty cache or if
3852 * an application has performed a lookup in the directory which
3853 * required an over the wire lookup. The use of READDIRPLUS
3854 * will help to (re)populate the DNLC.
3855 */
3856 if (!(mi->mi_flags & MI_READDIRONLY) &&
3857 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) {
3858 if (rp->r_flags & RREADDIRPLUS) {
3859 mutex_enter(&rp->r_statelock);
3860 rp->r_flags &= ~RREADDIRPLUS;
3861 mutex_exit(&rp->r_statelock);
3862 }
3863 nfs3readdirplus(vp, rdc, cr);
3864 if (rdc->error == EOPNOTSUPP)
3865 nfs3readdir(vp, rdc, cr);
3866 } else
3867 nfs3readdir(vp, rdc, cr);
3868
3869 mutex_enter(&rp->r_statelock);
3870 rdc->flags &= ~RDDIR;
3871 if (rdc->flags & RDDIRWAIT) {
3872 rdc->flags &= ~RDDIRWAIT;
3873 cv_broadcast(&rdc->cv);
3874 }
3875 error = rdc->error;
3876 if (error)
3877 rdc->flags |= RDDIRREQ;
3878 mutex_exit(&rp->r_statelock);
3879
3880 rddir_cache_rele(rdc);
3881
3882 return (error);
3883 }
3884
3885 static void
3886 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
3887 {
3888 int error;
3889 READDIR3args args;
3890 READDIR3vres res;
3891 vattr_t dva;
3892 rnode_t *rp;
3893 int douprintf;
3894 failinfo_t fi, *fip = NULL;
3895 mntinfo_t *mi;
3896 hrtime_t t;
3897
3898 rp = VTOR(vp);
3899 mi = VTOMI(vp);
3900 ASSERT(nfs_zone() == mi->mi_zone);
3901
3902 args.dir = *RTOFH3(rp);
3903 args.cookie = (cookie3)rdc->nfs3_cookie;
3904 args.cookieverf = rp->r_cookieverf;
3905 args.count = rdc->buflen;
3906
3907 /*
3908 * NFS client failover support
3909 * suppress failover unless we have a zero cookie
3910 */
3911 if (args.cookie == (cookie3) 0) {
3912 fi.vp = vp;
3913 fi.fhp = (caddr_t)&args.dir;
3914 fi.copyproc = nfs3copyfh;
3915 fi.lookupproc = nfs3lookup;
3916 fi.xattrdirproc = acl_getxattrdir3;
3917 fip = &fi;
3918 }
3919
3920 #ifdef DEBUG
3921 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
3922 #else
3923 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
3924 #endif
3925
3926 res.entries = (dirent64_t *)rdc->entries;
3927 res.entries_size = rdc->buflen;
3928 res.dir_attributes.fres.vap = &dva;
3929 res.dir_attributes.fres.vp = vp;
3930 res.loff = rdc->nfs3_cookie;
3931
3932 douprintf = 1;
3933
3934 if (mi->mi_io_kstats) {
3935 mutex_enter(&mi->mi_lock);
3936 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3937 mutex_exit(&mi->mi_lock);
3938 }
3939
3940 t = gethrtime();
3941
3942 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR,
3943 xdr_READDIR3args, (caddr_t)&args,
3944 xdr_READDIR3vres, (caddr_t)&res, cr,
3945 &douprintf, &res.status, 0, fip);
3946
3947 if (mi->mi_io_kstats) {
3948 mutex_enter(&mi->mi_lock);
3949 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3950 mutex_exit(&mi->mi_lock);
3951 }
3952
3953 if (error)
3954 goto err;
3955
3956 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr);
3957
3958 error = geterrno3(res.status);
3959 if (error) {
3960 PURGE_STALE_FH(error, vp, cr);
3961 goto err;
3962 }
3963
3964 if (mi->mi_io_kstats) {
3965 mutex_enter(&mi->mi_lock);
3966 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
3967 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
3968 mutex_exit(&mi->mi_lock);
3969 }
3970
3971 rdc->nfs3_ncookie = res.loff;
3972 rp->r_cookieverf = res.cookieverf;
3973 rdc->eof = res.eof ? 1 : 0;
3974 rdc->entlen = res.size;
3975 ASSERT(rdc->entlen <= rdc->buflen);
3976 rdc->error = 0;
3977 return;
3978
3979 err:
3980 kmem_free(rdc->entries, rdc->buflen);
3981 rdc->entries = NULL;
3982 rdc->error = error;
3983 }
3984
3985 /*
3986 * Read directory entries.
3987 * There are some weird things to look out for here. The uio_loffset
3988 * field is either 0 or it is the offset returned from a previous
3989 * readdir. It is an opaque value used by the server to find the
3990 * correct directory block to read. The count field is the number
3991 * of blocks to read on the server. This is advisory only, the server
3992 * may return only one block's worth of entries. Entries may be compressed
3993 * on the server.
3994 */
3995 static void
3996 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
3997 {
3998 int error;
3999 READDIRPLUS3args args;
4000 READDIRPLUS3vres res;
4001 vattr_t dva;
4002 rnode_t *rp;
4003 mntinfo_t *mi;
4004 int douprintf;
4005 failinfo_t fi, *fip = NULL;
4006
4007 rp = VTOR(vp);
4008 mi = VTOMI(vp);
4009 ASSERT(nfs_zone() == mi->mi_zone);
4010
4011 args.dir = *RTOFH3(rp);
4012 args.cookie = (cookie3)rdc->nfs3_cookie;
4013 args.cookieverf = rp->r_cookieverf;
4014 args.dircount = rdc->buflen;
4015 args.maxcount = mi->mi_tsize;
4016
4017 /*
4018 * NFS client failover support
4019 * suppress failover unless we have a zero cookie
4020 */
4021 if (args.cookie == (cookie3)0) {
4022 fi.vp = vp;
4023 fi.fhp = (caddr_t)&args.dir;
4024 fi.copyproc = nfs3copyfh;
4025 fi.lookupproc = nfs3lookup;
4026 fi.xattrdirproc = acl_getxattrdir3;
4027 fip = &fi;
4028 }
4029
4030 #ifdef DEBUG
4031 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
4032 #else
4033 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
4034 #endif
4035
4036 res.entries = (dirent64_t *)rdc->entries;
4037 res.entries_size = rdc->buflen;
4038 res.dir_attributes.fres.vap = &dva;
4039 res.dir_attributes.fres.vp = vp;
4040 res.loff = rdc->nfs3_cookie;
4041 res.credentials = cr;
4042
4043 douprintf = 1;
4044
4045 if (mi->mi_io_kstats) {
4046 mutex_enter(&mi->mi_lock);
4047 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
4048 mutex_exit(&mi->mi_lock);
4049 }
4050
4051 res.time = gethrtime();
4052
4053 error = rfs3call(mi, NFSPROC3_READDIRPLUS,
4054 xdr_READDIRPLUS3args, (caddr_t)&args,
4055 xdr_READDIRPLUS3vres, (caddr_t)&res, cr,
4056 &douprintf, &res.status, 0, fip);
4057
4058 if (mi->mi_io_kstats) {
4059 mutex_enter(&mi->mi_lock);
4060 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
4061 mutex_exit(&mi->mi_lock);
4062 }
4063
4064 if (error) {
4065 goto err;
4066 }
4067
4068 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr);
4069
4070 error = geterrno3(res.status);
4071 if (error) {
4072 PURGE_STALE_FH(error, vp, cr);
4073 if (error == EOPNOTSUPP) {
4074 mutex_enter(&mi->mi_lock);
4075 mi->mi_flags |= MI_READDIRONLY;
4076 mutex_exit(&mi->mi_lock);
4077 }
4078 goto err;
4079 }
4080
4081 if (mi->mi_io_kstats) {
4082 mutex_enter(&mi->mi_lock);
4083 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
4084 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
4085 mutex_exit(&mi->mi_lock);
4086 }
4087
4088 rdc->nfs3_ncookie = res.loff;
4089 rp->r_cookieverf = res.cookieverf;
4090 rdc->eof = res.eof ? 1 : 0;
4091 rdc->entlen = res.size;
4092 ASSERT(rdc->entlen <= rdc->buflen);
4093 rdc->error = 0;
4094
4095 return;
4096
4097 err:
4098 kmem_free(rdc->entries, rdc->buflen);
4099 rdc->entries = NULL;
4100 rdc->error = error;
4101 }
4102
4103 #ifdef DEBUG
4104 static int nfs3_bio_do_stop = 0;
4105 #endif
4106
4107 static int
4108 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr)
4109 {
4110 rnode_t *rp = VTOR(bp->b_vp);
4111 int count;
4112 int error;
4113 cred_t *cred;
4114 offset_t offset;
4115
4116 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone);
4117 offset = ldbtob(bp->b_lblkno);
4118
4119 DTRACE_IO1(start, struct buf *, bp);
4120
4121 if (bp->b_flags & B_READ) {
4122 mutex_enter(&rp->r_statelock);
4123 if (rp->r_cred != NULL) {
4124 cred = rp->r_cred;
4125 crhold(cred);
4126 } else {
4127 rp->r_cred = cr;
4128 crhold(cr);
4129 cred = cr;
4130 crhold(cred);
4131 }
4132 mutex_exit(&rp->r_statelock);
4133 read_again:
4134 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr,
4135 offset, bp->b_bcount, &bp->b_resid, cred);
4136 crfree(cred);
4137 if (!error) {
4138 if (bp->b_resid) {
4139 /*
4140 * Didn't get it all because we hit EOF,
4141 * zero all the memory beyond the EOF.
4142 */
4143 /* bzero(rdaddr + */
4144 bzero(bp->b_un.b_addr +
4145 bp->b_bcount - bp->b_resid, bp->b_resid);
4146 }
4147 mutex_enter(&rp->r_statelock);
4148 if (bp->b_resid == bp->b_bcount &&
4149 offset >= rp->r_size) {
4150 /*
4151 * We didn't read anything at all as we are
4152 * past EOF. Return an error indicator back
4153 * but don't destroy the pages (yet).
4154 */
4155 error = NFS_EOF;
4156 }
4157 mutex_exit(&rp->r_statelock);
4158 } else if (error == EACCES) {
4159 mutex_enter(&rp->r_statelock);
4160 if (cred != cr) {
4161 if (rp->r_cred != NULL)
4162 crfree(rp->r_cred);
4163 rp->r_cred = cr;
4164 crhold(cr);
4165 cred = cr;
4166 crhold(cred);
4167 mutex_exit(&rp->r_statelock);
4168 goto read_again;
4169 }
4170 mutex_exit(&rp->r_statelock);
4171 }
4172 } else {
4173 if (!(rp->r_flags & RSTALE)) {
4174 mutex_enter(&rp->r_statelock);
4175 if (rp->r_cred != NULL) {
4176 cred = rp->r_cred;
4177 crhold(cred);
4178 } else {
4179 rp->r_cred = cr;
4180 crhold(cr);
4181 cred = cr;
4182 crhold(cred);
4183 }
4184 mutex_exit(&rp->r_statelock);
4185 write_again:
4186 mutex_enter(&rp->r_statelock);
4187 count = MIN(bp->b_bcount, rp->r_size - offset);
4188 mutex_exit(&rp->r_statelock);
4189 if (count < 0)
4190 cmn_err(CE_PANIC, "nfs3_bio: write count < 0");
4191 #ifdef DEBUG
4192 if (count == 0) {
4193 zcmn_err(getzoneid(), CE_WARN,
4194 "nfs3_bio: zero length write at %lld",
4195 offset);
4196 nfs_printfhandle(&rp->r_fh);
4197 if (nfs3_bio_do_stop)
4198 debug_enter("nfs3_bio");
4199 }
4200 #endif
4201 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset,
4202 count, cred, stab_comm);
4203 if (error == EACCES) {
4204 mutex_enter(&rp->r_statelock);
4205 if (cred != cr) {
4206 if (rp->r_cred != NULL)
4207 crfree(rp->r_cred);
4208 rp->r_cred = cr;
4209 crhold(cr);
4210 crfree(cred);
4211 cred = cr;
4212 crhold(cred);
4213 mutex_exit(&rp->r_statelock);
4214 goto write_again;
4215 }
4216 mutex_exit(&rp->r_statelock);
4217 }
4218 bp->b_error = error;
4219 if (error && error != EINTR) {
4220 /*
4221 * Don't print EDQUOT errors on the console.
4222 * Don't print asynchronous EACCES errors.
4223 * Don't print EFBIG errors.
4224 * Print all other write errors.
4225 */
4226 if (error != EDQUOT && error != EFBIG &&
4227 (error != EACCES ||
4228 !(bp->b_flags & B_ASYNC)))
4229 nfs_write_error(bp->b_vp, error, cred);
4230 /*
4231 * Update r_error and r_flags as appropriate.
4232 * If the error was ESTALE, then mark the
4233 * rnode as not being writeable and save
4234 * the error status. Otherwise, save any
4235 * errors which occur from asynchronous
4236 * page invalidations. Any errors occurring
4237 * from other operations should be saved
4238 * by the caller.
4239 */
4240 mutex_enter(&rp->r_statelock);
4241 if (error == ESTALE) {
4242 rp->r_flags |= RSTALE;
4243 if (!rp->r_error)
4244 rp->r_error = error;
4245 } else if (!rp->r_error &&
4246 (bp->b_flags &
4247 (B_INVAL|B_FORCE|B_ASYNC)) ==
4248 (B_INVAL|B_FORCE|B_ASYNC)) {
4249 rp->r_error = error;
4250 }
4251 mutex_exit(&rp->r_statelock);
4252 }
4253 crfree(cred);
4254 } else
4255 error = rp->r_error;
4256 }
4257
4258 if (error != 0 && error != NFS_EOF)
4259 bp->b_flags |= B_ERROR;
4260
4261 DTRACE_IO1(done, struct buf *, bp);
4262
4263 return (error);
4264 }
4265
4266 static int
4267 nfs3_fid(vnode_t *vp, fid_t *fidp)
4268 {
4269 rnode_t *rp;
4270
4271 if (nfs_zone() != VTOMI(vp)->mi_zone)
4272 return (EIO);
4273 rp = VTOR(vp);
4274
4275 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) {
4276 fidp->fid_len = rp->r_fh.fh_len;
4277 return (ENOSPC);
4278 }
4279 fidp->fid_len = rp->r_fh.fh_len;
4280 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len);
4281 return (0);
4282 }
4283
4284 /* ARGSUSED2 */
4285 static int
4286 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4287 {
4288 rnode_t *rp = VTOR(vp);
4289
4290 if (!write_lock) {
4291 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4292 return (V_WRITELOCK_FALSE);
4293 }
4294
4295 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) {
4296 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4297 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp))
4298 return (V_WRITELOCK_FALSE);
4299 nfs_rw_exit(&rp->r_rwlock);
4300 }
4301
4302 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
4303 return (V_WRITELOCK_TRUE);
4304 }
4305
4306 /* ARGSUSED */
4307 static void
4308 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4309 {
4310 rnode_t *rp = VTOR(vp);
4311
4312 nfs_rw_exit(&rp->r_rwlock);
4313 }
4314
4315 /* ARGSUSED */
4316 static int
4317 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp)
4318 {
4319
4320 /*
4321 * Because we stuff the readdir cookie into the offset field
4322 * someone may attempt to do an lseek with the cookie which
4323 * we want to succeed.
4324 */
4325 if (vp->v_type == VDIR)
4326 return (0);
4327 if (*noffp < 0)
4328 return (EINVAL);
4329 return (0);
4330 }
4331
4332 /*
4333 * number of nfs3_bsize blocks to read ahead.
4334 */
4335 static int nfs3_nra = 4;
4336
4337 #ifdef DEBUG
4338 static int nfs3_lostpage = 0; /* number of times we lost original page */
4339 #endif
4340
4341 /*
4342 * Return all the pages from [off..off+len) in file
4343 */
4344 static int
4345 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4346 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4347 enum seg_rw rw, cred_t *cr)
4348 {
4349 rnode_t *rp;
4350 int error;
4351 mntinfo_t *mi;
4352
4353 if (vp->v_flag & VNOMAP)
4354 return (ENOSYS);
4355
4356 if (nfs_zone() != VTOMI(vp)->mi_zone)
4357 return (EIO);
4358 if (protp != NULL)
4359 *protp = PROT_ALL;
4360
4361 /*
4362 * Now valididate that the caches are up to date.
4363 */
4364 error = nfs3_validate_caches(vp, cr);
4365 if (error)
4366 return (error);
4367
4368 rp = VTOR(vp);
4369 mi = VTOMI(vp);
4370 retry:
4371 mutex_enter(&rp->r_statelock);
4372
4373 /*
4374 * Don't create dirty pages faster than they
4375 * can be cleaned so that the system doesn't
4376 * get imbalanced. If the async queue is
4377 * maxed out, then wait for it to drain before
4378 * creating more dirty pages. Also, wait for
4379 * any threads doing pagewalks in the vop_getattr
4380 * entry points so that they don't block for
4381 * long periods.
4382 */
4383 if (rw == S_CREATE) {
4384 while ((mi->mi_max_threads != 0 &&
4385 rp->r_awcount > 2 * mi->mi_max_threads) ||
4386 rp->r_gcount > 0)
4387 cv_wait(&rp->r_cv, &rp->r_statelock);
4388 }
4389
4390 /*
4391 * If we are getting called as a side effect of an nfs_write()
4392 * operation the local file size might not be extended yet.
4393 * In this case we want to be able to return pages of zeroes.
4394 */
4395 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
4396 mutex_exit(&rp->r_statelock);
4397 return (EFAULT); /* beyond EOF */
4398 }
4399
4400 mutex_exit(&rp->r_statelock);
4401
4402 if (len <= PAGESIZE) {
4403 error = nfs3_getapage(vp, off, len, protp, pl, plsz,
4404 seg, addr, rw, cr);
4405 } else {
4406 error = pvn_getpages(nfs3_getapage, vp, off, len, protp,
4407 pl, plsz, seg, addr, rw, cr);
4408 }
4409
4410 switch (error) {
4411 case NFS_EOF:
4412 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
4413 goto retry;
4414 case ESTALE:
4415 PURGE_STALE_FH(error, vp, cr);
4416 }
4417
4418 return (error);
4419 }
4420
4421 /*
4422 * Called from pvn_getpages or nfs3_getpage to get a particular page.
4423 */
4424 /* ARGSUSED */
4425 static int
4426 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
4427 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4428 enum seg_rw rw, cred_t *cr)
4429 {
4430 rnode_t *rp;
4431 uint_t bsize;
4432 struct buf *bp;
4433 page_t *pp;
4434 u_offset_t lbn;
4435 u_offset_t io_off;
4436 u_offset_t blkoff;
4437 u_offset_t rablkoff;
4438 size_t io_len;
4439 uint_t blksize;
4440 int error;
4441 int readahead;
4442 int readahead_issued = 0;
4443 int ra_window; /* readahead window */
4444 page_t *pagefound;
4445 page_t *savepp;
4446
4447 if (nfs_zone() != VTOMI(vp)->mi_zone)
4448 return (EIO);
4449 rp = VTOR(vp);
4450 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4451
4452 reread:
4453 bp = NULL;
4454 pp = NULL;
4455 pagefound = NULL;
4456
4457 if (pl != NULL)
4458 pl[0] = NULL;
4459
4460 error = 0;
4461 lbn = off / bsize;
4462 blkoff = lbn * bsize;
4463
4464 /*
4465 * Queueing up the readahead before doing the synchronous read
4466 * results in a significant increase in read throughput because
4467 * of the increased parallelism between the async threads and
4468 * the process context.
4469 */
4470 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
4471 rw != S_CREATE &&
4472 !(vp->v_flag & VNOCACHE)) {
4473 mutex_enter(&rp->r_statelock);
4474
4475 /*
4476 * Calculate the number of readaheads to do.
4477 * a) No readaheads at offset = 0.
4478 * b) Do maximum(nfs3_nra) readaheads when the readahead
4479 * window is closed.
4480 * c) Do readaheads between 1 to (nfs3_nra - 1) depending
4481 * upon how far the readahead window is open or close.
4482 * d) No readaheads if rp->r_nextr is not within the scope
4483 * of the readahead window (random i/o).
4484 */
4485
4486 if (off == 0)
4487 readahead = 0;
4488 else if (blkoff == rp->r_nextr)
4489 readahead = nfs3_nra;
4490 else if (rp->r_nextr > blkoff &&
4491 ((ra_window = (rp->r_nextr - blkoff) / bsize)
4492 <= (nfs3_nra - 1)))
4493 readahead = nfs3_nra - ra_window;
4494 else
4495 readahead = 0;
4496
4497 rablkoff = rp->r_nextr;
4498 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
4499 mutex_exit(&rp->r_statelock);
4500 if (nfs_async_readahead(vp, rablkoff + bsize,
4501 addr + (rablkoff + bsize - off), seg, cr,
4502 nfs3_readahead) < 0) {
4503 mutex_enter(&rp->r_statelock);
4504 break;
4505 }
4506 readahead--;
4507 rablkoff += bsize;
4508 /*
4509 * Indicate that we did a readahead so
4510 * readahead offset is not updated
4511 * by the synchronous read below.
4512 */
4513 readahead_issued = 1;
4514 mutex_enter(&rp->r_statelock);
4515 /*
4516 * set readahead offset to
4517 * offset of last async readahead
4518 * request.
4519 */
4520 rp->r_nextr = rablkoff;
4521 }
4522 mutex_exit(&rp->r_statelock);
4523 }
4524
4525 again:
4526 if ((pagefound = page_exists(vp, off)) == NULL) {
4527 if (pl == NULL) {
4528 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr,
4529 nfs3_readahead);
4530 } else if (rw == S_CREATE) {
4531 /*
4532 * Block for this page is not allocated, or the offset
4533 * is beyond the current allocation size, or we're
4534 * allocating a swap slot and the page was not found,
4535 * so allocate it and return a zero page.
4536 */
4537 if ((pp = page_create_va(vp, off,
4538 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
4539 cmn_err(CE_PANIC, "nfs3_getapage: page_create");
4540 io_len = PAGESIZE;
4541 mutex_enter(&rp->r_statelock);
4542 rp->r_nextr = off + PAGESIZE;
4543 mutex_exit(&rp->r_statelock);
4544 } else {
4545 /*
4546 * Need to go to server to get a BLOCK, exception to
4547 * that being while reading at offset = 0 or doing
4548 * random i/o, in that case read only a PAGE.
4549 */
4550 mutex_enter(&rp->r_statelock);
4551 if (blkoff < rp->r_size &&
4552 blkoff + bsize >= rp->r_size) {
4553 /*
4554 * If only a block or less is left in
4555 * the file, read all that is remaining.
4556 */
4557 if (rp->r_size <= off) {
4558 /*
4559 * Trying to access beyond EOF,
4560 * set up to get at least one page.
4561 */
4562 blksize = off + PAGESIZE - blkoff;
4563 } else
4564 blksize = rp->r_size - blkoff;
4565 } else if ((off == 0) ||
4566 (off != rp->r_nextr && !readahead_issued)) {
4567 blksize = PAGESIZE;
4568 blkoff = off; /* block = page here */
4569 } else
4570 blksize = bsize;
4571 mutex_exit(&rp->r_statelock);
4572
4573 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4574 &io_len, blkoff, blksize, 0);
4575
4576 /*
4577 * Some other thread has entered the page,
4578 * so just use it.
4579 */
4580 if (pp == NULL)
4581 goto again;
4582
4583 /*
4584 * Now round the request size up to page boundaries.
4585 * This ensures that the entire page will be
4586 * initialized to zeroes if EOF is encountered.
4587 */
4588 io_len = ptob(btopr(io_len));
4589
4590 bp = pageio_setup(pp, io_len, vp, B_READ);
4591 ASSERT(bp != NULL);
4592
4593 /*
4594 * pageio_setup should have set b_addr to 0. This
4595 * is correct since we want to do I/O on a page
4596 * boundary. bp_mapin will use this addr to calculate
4597 * an offset, and then set b_addr to the kernel virtual
4598 * address it allocated for us.
4599 */
4600 ASSERT(bp->b_un.b_addr == 0);
4601
4602 bp->b_edev = 0;
4603 bp->b_dev = 0;
4604 bp->b_lblkno = lbtodb(io_off);
4605 bp->b_file = vp;
4606 bp->b_offset = (offset_t)off;
4607 bp_mapin(bp);
4608
4609 /*
4610 * If doing a write beyond what we believe is EOF,
4611 * don't bother trying to read the pages from the
4612 * server, we'll just zero the pages here. We
4613 * don't check that the rw flag is S_WRITE here
4614 * because some implementations may attempt a
4615 * read access to the buffer before copying data.
4616 */
4617 mutex_enter(&rp->r_statelock);
4618 if (io_off >= rp->r_size && seg == segkmap) {
4619 mutex_exit(&rp->r_statelock);
4620 bzero(bp->b_un.b_addr, io_len);
4621 } else {
4622 mutex_exit(&rp->r_statelock);
4623 error = nfs3_bio(bp, NULL, cr);
4624 }
4625
4626 /*
4627 * Unmap the buffer before freeing it.
4628 */
4629 bp_mapout(bp);
4630 pageio_done(bp);
4631
4632 savepp = pp;
4633 do {
4634 pp->p_fsdata = C_NOCOMMIT;
4635 } while ((pp = pp->p_next) != savepp);
4636
4637 if (error == NFS_EOF) {
4638 /*
4639 * If doing a write system call just return
4640 * zeroed pages, else user tried to get pages
4641 * beyond EOF, return error. We don't check
4642 * that the rw flag is S_WRITE here because
4643 * some implementations may attempt a read
4644 * access to the buffer before copying data.
4645 */
4646 if (seg == segkmap)
4647 error = 0;
4648 else
4649 error = EFAULT;
4650 }
4651
4652 if (!readahead_issued && !error) {
4653 mutex_enter(&rp->r_statelock);
4654 rp->r_nextr = io_off + io_len;
4655 mutex_exit(&rp->r_statelock);
4656 }
4657 }
4658 }
4659
4660 out:
4661 if (pl == NULL)
4662 return (error);
4663
4664 if (error) {
4665 if (pp != NULL)
4666 pvn_read_done(pp, B_ERROR);
4667 return (error);
4668 }
4669
4670 if (pagefound) {
4671 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
4672
4673 /*
4674 * Page exists in the cache, acquire the appropriate lock.
4675 * If this fails, start all over again.
4676 */
4677 if ((pp = page_lookup(vp, off, se)) == NULL) {
4678 #ifdef DEBUG
4679 nfs3_lostpage++;
4680 #endif
4681 goto reread;
4682 }
4683 pl[0] = pp;
4684 pl[1] = NULL;
4685 return (0);
4686 }
4687
4688 if (pp != NULL)
4689 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4690
4691 return (error);
4692 }
4693
4694 static void
4695 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
4696 cred_t *cr)
4697 {
4698 int error;
4699 page_t *pp;
4700 u_offset_t io_off;
4701 size_t io_len;
4702 struct buf *bp;
4703 uint_t bsize, blksize;
4704 rnode_t *rp = VTOR(vp);
4705 page_t *savepp;
4706
4707 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4708 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4709
4710 mutex_enter(&rp->r_statelock);
4711 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
4712 /*
4713 * If less than a block left in file read less
4714 * than a block.
4715 */
4716 blksize = rp->r_size - blkoff;
4717 } else
4718 blksize = bsize;
4719 mutex_exit(&rp->r_statelock);
4720
4721 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
4722 &io_off, &io_len, blkoff, blksize, 1);
4723 /*
4724 * The isra flag passed to the kluster function is 1, we may have
4725 * gotten a return value of NULL for a variety of reasons (# of free
4726 * pages < minfree, someone entered the page on the vnode etc). In all
4727 * cases, we want to punt on the readahead.
4728 */
4729 if (pp == NULL)
4730 return;
4731
4732 /*
4733 * Now round the request size up to page boundaries.
4734 * This ensures that the entire page will be
4735 * initialized to zeroes if EOF is encountered.
4736 */
4737 io_len = ptob(btopr(io_len));
4738
4739 bp = pageio_setup(pp, io_len, vp, B_READ);
4740 ASSERT(bp != NULL);
4741
4742 /*
4743 * pageio_setup should have set b_addr to 0. This is correct since
4744 * we want to do I/O on a page boundary. bp_mapin() will use this addr
4745 * to calculate an offset, and then set b_addr to the kernel virtual
4746 * address it allocated for us.
4747 */
4748 ASSERT(bp->b_un.b_addr == 0);
4749
4750 bp->b_edev = 0;
4751 bp->b_dev = 0;
4752 bp->b_lblkno = lbtodb(io_off);
4753 bp->b_file = vp;
4754 bp->b_offset = (offset_t)blkoff;
4755 bp_mapin(bp);
4756
4757 /*
4758 * If doing a write beyond what we believe is EOF, don't bother trying
4759 * to read the pages from the server, we'll just zero the pages here.
4760 * We don't check that the rw flag is S_WRITE here because some
4761 * implementations may attempt a read access to the buffer before
4762 * copying data.
4763 */
4764 mutex_enter(&rp->r_statelock);
4765 if (io_off >= rp->r_size && seg == segkmap) {
4766 mutex_exit(&rp->r_statelock);
4767 bzero(bp->b_un.b_addr, io_len);
4768 error = 0;
4769 } else {
4770 mutex_exit(&rp->r_statelock);
4771 error = nfs3_bio(bp, NULL, cr);
4772 if (error == NFS_EOF)
4773 error = 0;
4774 }
4775
4776 /*
4777 * Unmap the buffer before freeing it.
4778 */
4779 bp_mapout(bp);
4780 pageio_done(bp);
4781
4782 savepp = pp;
4783 do {
4784 pp->p_fsdata = C_NOCOMMIT;
4785 } while ((pp = pp->p_next) != savepp);
4786
4787 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
4788
4789 /*
4790 * In case of error set readahead offset
4791 * to the lowest offset.
4792 * pvn_read_done() calls VN_DISPOSE to destroy the pages
4793 */
4794 if (error && rp->r_nextr > io_off) {
4795 mutex_enter(&rp->r_statelock);
4796 if (rp->r_nextr > io_off)
4797 rp->r_nextr = io_off;
4798 mutex_exit(&rp->r_statelock);
4799 }
4800 }
4801
4802 /*
4803 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
4804 * If len == 0, do from off to EOF.
4805 *
4806 * The normal cases should be len == 0 && off == 0 (entire vp list),
4807 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
4808 * (from pageout).
4809 */
4810 static int
4811 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr)
4812 {
4813 int error;
4814 rnode_t *rp;
4815
4816 ASSERT(cr != NULL);
4817
4818 /*
4819 * XXX - Why should this check be made here?
4820 */
4821 if (vp->v_flag & VNOMAP)
4822 return (ENOSYS);
4823 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp))
4824 return (0);
4825 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
4826 return (EIO);
4827
4828 rp = VTOR(vp);
4829 mutex_enter(&rp->r_statelock);
4830 rp->r_count++;
4831 mutex_exit(&rp->r_statelock);
4832 error = nfs_putpages(vp, off, len, flags, cr);
4833 mutex_enter(&rp->r_statelock);
4834 rp->r_count--;
4835 cv_broadcast(&rp->r_cv);
4836 mutex_exit(&rp->r_statelock);
4837
4838 return (error);
4839 }
4840
4841 /*
4842 * Write out a single page, possibly klustering adjacent dirty pages.
4843 */
4844 int
4845 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
4846 int flags, cred_t *cr)
4847 {
4848 u_offset_t io_off;
4849 u_offset_t lbn_off;
4850 u_offset_t lbn;
4851 size_t io_len;
4852 uint_t bsize;
4853 int error;
4854 rnode_t *rp;
4855
4856 ASSERT(!vn_is_readonly(vp));
4857 ASSERT(pp != NULL);
4858 ASSERT(cr != NULL);
4859 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone);
4860
4861 rp = VTOR(vp);
4862 ASSERT(rp->r_count > 0);
4863
4864 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4865 lbn = pp->p_offset / bsize;
4866 lbn_off = lbn * bsize;
4867
4868 /*
4869 * Find a kluster that fits in one block, or in
4870 * one page if pages are bigger than blocks. If
4871 * there is less file space allocated than a whole
4872 * page, we'll shorten the i/o request below.
4873 */
4874 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
4875 roundup(bsize, PAGESIZE), flags);
4876
4877 /*
4878 * pvn_write_kluster shouldn't have returned a page with offset
4879 * behind the original page we were given. Verify that.
4880 */
4881 ASSERT((pp->p_offset / bsize) >= lbn);
4882
4883 /*
4884 * Now pp will have the list of kept dirty pages marked for
4885 * write back. It will also handle invalidation and freeing
4886 * of pages that are not dirty. Check for page length rounding
4887 * problems.
4888 */
4889 if (io_off + io_len > lbn_off + bsize) {
4890 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
4891 io_len = lbn_off + bsize - io_off;
4892 }
4893 /*
4894 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
4895 * consistent value of r_size. RMODINPROGRESS is set in writerp().
4896 * When RMODINPROGRESS is set it indicates that a uiomove() is in
4897 * progress and the r_size has not been made consistent with the
4898 * new size of the file. When the uiomove() completes the r_size is
4899 * updated and the RMODINPROGRESS flag is cleared.
4900 *
4901 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
4902 * consistent value of r_size. Without this handshaking, it is
4903 * possible that nfs(3)_bio() picks up the old value of r_size
4904 * before the uiomove() in writerp() completes. This will result
4905 * in the write through nfs(3)_bio() being dropped.
4906 *
4907 * More precisely, there is a window between the time the uiomove()
4908 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
4909 * operation intervenes in this window, the page will be picked up,
4910 * because it is dirty (it will be unlocked, unless it was
4911 * pagecreate'd). When the page is picked up as dirty, the dirty
4912 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is
4913 * checked. This will still be the old size. Therefore the page will
4914 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
4915 * the page will be found to be clean and the write will be dropped.
4916 */
4917 if (rp->r_flags & RMODINPROGRESS) {
4918 mutex_enter(&rp->r_statelock);
4919 if ((rp->r_flags & RMODINPROGRESS) &&
4920 rp->r_modaddr + MAXBSIZE > io_off &&
4921 rp->r_modaddr < io_off + io_len) {
4922 page_t *plist;
4923 /*
4924 * A write is in progress for this region of the file.
4925 * If we did not detect RMODINPROGRESS here then this
4926 * path through nfs_putapage() would eventually go to
4927 * nfs(3)_bio() and may not write out all of the data
4928 * in the pages. We end up losing data. So we decide
4929 * to set the modified bit on each page in the page
4930 * list and mark the rnode with RDIRTY. This write
4931 * will be restarted at some later time.
4932 */
4933 plist = pp;
4934 while (plist != NULL) {
4935 pp = plist;
4936 page_sub(&plist, pp);
4937 hat_setmod(pp);
4938 page_io_unlock(pp);
4939 page_unlock(pp);
4940 }
4941 rp->r_flags |= RDIRTY;
4942 mutex_exit(&rp->r_statelock);
4943 if (offp)
4944 *offp = io_off;
4945 if (lenp)
4946 *lenp = io_len;
4947 return (0);
4948 }
4949 mutex_exit(&rp->r_statelock);
4950 }
4951
4952 if (flags & B_ASYNC) {
4953 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr,
4954 nfs3_sync_putapage);
4955 } else
4956 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr);
4957
4958 if (offp)
4959 *offp = io_off;
4960 if (lenp)
4961 *lenp = io_len;
4962 return (error);
4963 }
4964
4965 static int
4966 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
4967 int flags, cred_t *cr)
4968 {
4969 int error;
4970 rnode_t *rp;
4971
4972 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4973
4974 flags |= B_WRITE;
4975
4976 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
4977
4978 rp = VTOR(vp);
4979
4980 if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
4981 error == EACCES) &&
4982 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
4983 if (!(rp->r_flags & ROUTOFSPACE)) {
4984 mutex_enter(&rp->r_statelock);
4985 rp->r_flags |= ROUTOFSPACE;
4986 mutex_exit(&rp->r_statelock);
4987 }
4988 flags |= B_ERROR;
4989 pvn_write_done(pp, flags);
4990 /*
4991 * If this was not an async thread, then try again to
4992 * write out the pages, but this time, also destroy
4993 * them whether or not the write is successful. This
4994 * will prevent memory from filling up with these
4995 * pages and destroying them is the only alternative
4996 * if they can't be written out.
4997 *
4998 * Don't do this if this is an async thread because
4999 * when the pages are unlocked in pvn_write_done,
5000 * some other thread could have come along, locked
5001 * them, and queued for an async thread. It would be
5002 * possible for all of the async threads to be tied
5003 * up waiting to lock the pages again and they would
5004 * all already be locked and waiting for an async
5005 * thread to handle them. Deadlock.
5006 */
5007 if (!(flags & B_ASYNC)) {
5008 error = nfs3_putpage(vp, io_off, io_len,
5009 B_INVAL | B_FORCE, cr);
5010 }
5011 } else {
5012 if (error)
5013 flags |= B_ERROR;
5014 else if (rp->r_flags & ROUTOFSPACE) {
5015 mutex_enter(&rp->r_statelock);
5016 rp->r_flags &= ~ROUTOFSPACE;
5017 mutex_exit(&rp->r_statelock);
5018 }
5019 pvn_write_done(pp, flags);
5020 if (freemem < desfree)
5021 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr);
5022 }
5023
5024 return (error);
5025 }
5026
5027 static int
5028 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
5029 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr)
5030 {
5031 struct segvn_crargs vn_a;
5032 int error;
5033 rnode_t *rp;
5034 struct vattr va;
5035
5036 if (nfs_zone() != VTOMI(vp)->mi_zone)
5037 return (EIO);
5038
5039 if (vp->v_flag & VNOMAP)
5040 return (ENOSYS);
5041
5042 if (off < 0 || off + len < 0)
5043 return (ENXIO);
5044
5045 if (vp->v_type != VREG)
5046 return (ENODEV);
5047
5048 /*
5049 * If there is cached data and if close-to-open consistency
5050 * checking is not turned off and if the file system is not
5051 * mounted readonly, then force an over the wire getattr.
5052 * Otherwise, just invoke nfs3getattr to get a copy of the
5053 * attributes. The attribute cache will be used unless it
5054 * is timed out and if it is, then an over the wire getattr
5055 * will be issued.
5056 */
5057 va.va_mask = AT_ALL;
5058 if (vn_has_cached_data(vp) &&
5059 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp))
5060 error = nfs3_getattr_otw(vp, &va, cr);
5061 else
5062 error = nfs3getattr(vp, &va, cr);
5063 if (error)
5064 return (error);
5065
5066 /*
5067 * Check to see if the vnode is currently marked as not cachable.
5068 * This means portions of the file are locked (through VOP_FRLOCK).
5069 * In this case the map request must be refused. We use
5070 * rp->r_lkserlock to avoid a race with concurrent lock requests.
5071 */
5072 rp = VTOR(vp);
5073 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp)))
5074 return (EINTR);
5075
5076 if (vp->v_flag & VNOCACHE) {
5077 error = EAGAIN;
5078 goto done;
5079 }
5080
5081 /*
5082 * Don't allow concurrent locks and mapping if mandatory locking is
5083 * enabled.
5084 */
5085 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) &&
5086 MANDLOCK(vp, va.va_mode)) {
5087 error = EAGAIN;
5088 goto done;
5089 }
5090
5091 as_rangelock(as);
5092 if (!(flags & MAP_FIXED)) {
5093 map_addr(addrp, len, off, 1, flags);
5094 if (*addrp == NULL) {
5095 as_rangeunlock(as);
5096 error = ENOMEM;
5097 goto done;
5098 }
5099 } else {
5100 /*
5101 * User specified address - blow away any previous mappings
5102 */
5103 (void) as_unmap(as, *addrp, len);
5104 }
5105
5106 vn_a.vp = vp;
5107 vn_a.offset = off;
5108 vn_a.type = (flags & MAP_TYPE);
5109 vn_a.prot = (uchar_t)prot;
5110 vn_a.maxprot = (uchar_t)maxprot;
5111 vn_a.flags = (flags & ~MAP_TYPE);
5112 vn_a.cred = cr;
5113 vn_a.amp = NULL;
5114 vn_a.szc = 0;
5115 vn_a.lgrp_mem_policy_flags = 0;
5116
5117 error = as_map(as, *addrp, len, segvn_create, &vn_a);
5118 as_rangeunlock(as);
5119
5120 done:
5121 nfs_rw_exit(&rp->r_lkserlock);
5122 return (error);
5123 }
5124
5125 /* ARGSUSED */
5126 static int
5127 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5128 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr)
5129 {
5130 rnode_t *rp;
5131
5132 if (vp->v_flag & VNOMAP)
5133 return (ENOSYS);
5134 if (nfs_zone() != VTOMI(vp)->mi_zone)
5135 return (EIO);
5136
5137 /*
5138 * Need to hold rwlock while incrementing the mapcnt so that
5139 * mmap'ing can be serialized with writes so that the caching
5140 * can be handled correctly.
5141 */
5142 rp = VTOR(vp);
5143 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp)))
5144 return (EINTR);
5145 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
5146 nfs_rw_exit(&rp->r_rwlock);
5147
5148 return (0);
5149 }
5150
5151 static int
5152 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5153 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr)
5154 {
5155 netobj lm_fh3;
5156 int rc;
5157 u_offset_t start, end;
5158 rnode_t *rp;
5159 int error = 0, intr = INTR(vp);
5160
5161 if (nfs_zone() != VTOMI(vp)->mi_zone)
5162 return (EIO);
5163 /* check for valid cmd parameter */
5164 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
5165 return (EINVAL);
5166
5167 /* Verify l_type. */
5168 switch (bfp->l_type) {
5169 case F_RDLCK:
5170 if (cmd != F_GETLK && !(flag & FREAD))
5171 return (EBADF);
5172 break;
5173 case F_WRLCK:
5174 if (cmd != F_GETLK && !(flag & FWRITE))
5175 return (EBADF);
5176 break;
5177 case F_UNLCK:
5178 intr = 0;
5179 break;
5180
5181 default:
5182 return (EINVAL);
5183 }
5184
5185 /* check the validity of the lock range */
5186 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
5187 return (rc);
5188 if (rc = flk_check_lock_data(start, end, MAXEND))
5189 return (rc);
5190
5191 /*
5192 * If the filesystem is mounted using local locking, pass the
5193 * request off to the local locking code.
5194 */
5195 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
5196 if (cmd == F_SETLK || cmd == F_SETLKW) {
5197 /*
5198 * For complete safety, we should be holding
5199 * r_lkserlock. However, we can't call
5200 * lm_safelock and then fs_frlock while
5201 * holding r_lkserlock, so just invoke
5202 * lm_safelock and expect that this will
5203 * catch enough of the cases.
5204 */
5205 if (!lm_safelock(vp, bfp, cr))
5206 return (EAGAIN);
5207 }
5208 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr));
5209 }
5210
5211 rp = VTOR(vp);
5212
5213 /*
5214 * Check whether the given lock request can proceed, given the
5215 * current file mappings.
5216 */
5217 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
5218 return (EINTR);
5219 if (cmd == F_SETLK || cmd == F_SETLKW) {
5220 if (!lm_safelock(vp, bfp, cr)) {
5221 rc = EAGAIN;
5222 goto done;
5223 }
5224 }
5225
5226 /*
5227 * Flush the cache after waiting for async I/O to finish. For new
5228 * locks, this is so that the process gets the latest bits from the
5229 * server. For unlocks, this is so that other clients see the
5230 * latest bits once the file has been unlocked. If currently dirty
5231 * pages can't be flushed, then don't allow a lock to be set. But
5232 * allow unlocks to succeed, to avoid having orphan locks on the
5233 * server.
5234 */
5235 if (cmd != F_GETLK) {
5236 mutex_enter(&rp->r_statelock);
5237 while (rp->r_count > 0) {
5238 if (intr) {
5239 klwp_t *lwp = ttolwp(curthread);
5240
5241 if (lwp != NULL)
5242 lwp->lwp_nostop++;
5243 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) {
5244 if (lwp != NULL)
5245 lwp->lwp_nostop--;
5246 rc = EINTR;
5247 break;
5248 }
5249 if (lwp != NULL)
5250 lwp->lwp_nostop--;
5251 } else
5252 cv_wait(&rp->r_cv, &rp->r_statelock);
5253 }
5254 mutex_exit(&rp->r_statelock);
5255 if (rc != 0)
5256 goto done;
5257 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr);
5258 if (error) {
5259 if (error == ENOSPC || error == EDQUOT) {
5260 mutex_enter(&rp->r_statelock);
5261 if (!rp->r_error)
5262 rp->r_error = error;
5263 mutex_exit(&rp->r_statelock);
5264 }
5265 if (bfp->l_type != F_UNLCK) {
5266 rc = ENOLCK;
5267 goto done;
5268 }
5269 }
5270 }
5271
5272 lm_fh3.n_len = VTOFH3(vp)->fh3_length;
5273 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
5274
5275 /*
5276 * Call the lock manager to do the real work of contacting
5277 * the server and obtaining the lock.
5278 */
5279 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp);
5280
5281 if (rc == 0)
5282 nfs_lockcompletion(vp, cmd);
5283
5284 done:
5285 nfs_rw_exit(&rp->r_lkserlock);
5286 return (rc);
5287 }
5288
5289 /*
5290 * Free storage space associated with the specified vnode. The portion
5291 * to be freed is specified by bfp->l_start and bfp->l_len (already
5292 * normalized to a "whence" of 0).
5293 *
5294 * This is an experimental facility whose continued existence is not
5295 * guaranteed. Currently, we only support the special case
5296 * of l_len == 0, meaning free to end of file.
5297 */
5298 /* ARGSUSED */
5299 static int
5300 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5301 offset_t offset, cred_t *cr, caller_context_t *ct)
5302 {
5303 int error;
5304
5305 ASSERT(vp->v_type == VREG);
5306 if (cmd != F_FREESP)
5307 return (EINVAL);
5308 if (nfs_zone() != VTOMI(vp)->mi_zone)
5309 return (EIO);
5310
5311 error = convoff(vp, bfp, 0, offset);
5312 if (!error) {
5313 ASSERT(bfp->l_start >= 0);
5314 if (bfp->l_len == 0) {
5315 struct vattr va;
5316
5317 /*
5318 * ftruncate should not change the ctime and
5319 * mtime if we truncate the file to its
5320 * previous size.
5321 */
5322 va.va_mask = AT_SIZE;
5323 error = nfs3getattr(vp, &va, cr);
5324 if (error || va.va_size == bfp->l_start)
5325 return (error);
5326 va.va_mask = AT_SIZE;
5327 va.va_size = bfp->l_start;
5328 error = nfs3setattr(vp, &va, 0, cr);
5329 } else
5330 error = EINVAL;
5331 }
5332
5333 return (error);
5334 }
5335
5336 /* ARGSUSED */
5337 static int
5338 nfs3_realvp(vnode_t *vp, vnode_t **vpp)
5339 {
5340
5341 return (EINVAL);
5342 }
5343
5344 /*
5345 * Setup and add an address space callback to do the work of the delmap call.
5346 * The callback will (and must be) deleted in the actual callback function.
5347 *
5348 * This is done in order to take care of the problem that we have with holding
5349 * the address space's a_lock for a long period of time (e.g. if the NFS server
5350 * is down). Callbacks will be executed in the address space code while the
5351 * a_lock is not held. Holding the address space's a_lock causes things such
5352 * as ps and fork to hang because they are trying to acquire this lock as well.
5353 */
5354 /* ARGSUSED */
5355 static int
5356 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5357 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr)
5358 {
5359 int caller_found;
5360 int error;
5361 rnode_t *rp;
5362 nfs_delmap_args_t *dmapp;
5363 nfs_delmapcall_t *delmap_call;
5364
5365 if (vp->v_flag & VNOMAP)
5366 return (ENOSYS);
5367 /*
5368 * A process may not change zones if it has NFS pages mmap'ed
5369 * in, so we can't legitimately get here from the wrong zone.
5370 */
5371 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5372
5373 rp = VTOR(vp);
5374
5375 /*
5376 * The way that the address space of this process deletes its mapping
5377 * of this file is via the following call chains:
5378 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
5379 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
5380 *
5381 * With the use of address space callbacks we are allowed to drop the
5382 * address space lock, a_lock, while executing the NFS operations that
5383 * need to go over the wire. Returning EAGAIN to the caller of this
5384 * function is what drives the execution of the callback that we add
5385 * below. The callback will be executed by the address space code
5386 * after dropping the a_lock. When the callback is finished, since
5387 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
5388 * is called again on the same segment to finish the rest of the work
5389 * that needs to happen during unmapping.
5390 *
5391 * This action of calling back into the segment driver causes
5392 * nfs3_delmap() to get called again, but since the callback was
5393 * already executed at this point, it already did the work and there
5394 * is nothing left for us to do.
5395 *
5396 * To Summarize:
5397 * - The first time nfs3_delmap is called by the current thread is when
5398 * we add the caller associated with this delmap to the delmap caller
5399 * list, add the callback, and return EAGAIN.
5400 * - The second time in this call chain when nfs3_delmap is called we
5401 * will find this caller in the delmap caller list and realize there
5402 * is no more work to do thus removing this caller from the list and
5403 * returning the error that was set in the callback execution.
5404 */
5405 caller_found = nfs_find_and_delete_delmapcall(rp, &error);
5406 if (caller_found) {
5407 /*
5408 * 'error' is from the actual delmap operations. To avoid
5409 * hangs, we need to handle the return of EAGAIN differently
5410 * since this is what drives the callback execution.
5411 * In this case, we don't want to return EAGAIN and do the
5412 * callback execution because there are none to execute.
5413 */
5414 if (error == EAGAIN)
5415 return (0);
5416 else
5417 return (error);
5418 }
5419
5420 /* current caller was not in the list */
5421 delmap_call = nfs_init_delmapcall();
5422
5423 mutex_enter(&rp->r_statelock);
5424 list_insert_tail(&rp->r_indelmap, delmap_call);
5425 mutex_exit(&rp->r_statelock);
5426
5427 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP);
5428
5429 dmapp->vp = vp;
5430 dmapp->off = off;
5431 dmapp->addr = addr;
5432 dmapp->len = len;
5433 dmapp->prot = prot;
5434 dmapp->maxprot = maxprot;
5435 dmapp->flags = flags;
5436 dmapp->cr = cr;
5437 dmapp->caller = delmap_call;
5438
5439 error = as_add_callback(as, nfs3_delmap_callback, dmapp,
5440 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
5441
5442 return (error ? error : EAGAIN);
5443 }
5444
5445 /*
5446 * Remove some pages from an mmap'd vnode. Just update the
5447 * count of pages. If doing close-to-open, then flush and
5448 * commit all of the pages associated with this file.
5449 * Otherwise, start an asynchronous page flush to write out
5450 * any dirty pages. This will also associate a credential
5451 * with the rnode which can be used to write the pages.
5452 */
5453 /* ARGSUSED */
5454 static void
5455 nfs3_delmap_callback(struct as *as, void *arg, uint_t event)
5456 {
5457 int error;
5458 rnode_t *rp;
5459 mntinfo_t *mi;
5460 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg;
5461
5462 rp = VTOR(dmapp->vp);
5463 mi = VTOMI(dmapp->vp);
5464
5465 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
5466 ASSERT(rp->r_mapcnt >= 0);
5467
5468 /*
5469 * Initiate a page flush and potential commit if there are
5470 * pages, the file system was not mounted readonly, the segment
5471 * was mapped shared, and the pages themselves were writeable.
5472 */
5473 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) &&
5474 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
5475 mutex_enter(&rp->r_statelock);
5476 rp->r_flags |= RDIRTY;
5477 mutex_exit(&rp->r_statelock);
5478 /*
5479 * If this is a cross-zone access a sync putpage won't work, so
5480 * the best we can do is try an async putpage. That seems
5481 * better than something more draconian such as discarding the
5482 * dirty pages.
5483 */
5484 if ((mi->mi_flags & MI_NOCTO) ||
5485 nfs_zone() != mi->mi_zone)
5486 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5487 B_ASYNC, dmapp->cr);
5488 else
5489 error = nfs3_putpage_commit(dmapp->vp, dmapp->off,
5490 dmapp->len, dmapp->cr);
5491 if (!error) {
5492 mutex_enter(&rp->r_statelock);
5493 error = rp->r_error;
5494 rp->r_error = 0;
5495 mutex_exit(&rp->r_statelock);
5496 }
5497 } else
5498 error = 0;
5499
5500 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO))
5501 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5502 B_INVAL, dmapp->cr);
5503
5504 dmapp->caller->error = error;
5505 (void) as_delete_callback(as, arg);
5506 kmem_free(dmapp, sizeof (nfs_delmap_args_t));
5507 }
5508
5509 static int nfs3_pathconf_disable_cache = 0;
5510
5511 #ifdef DEBUG
5512 static int nfs3_pathconf_cache_hits = 0;
5513 static int nfs3_pathconf_cache_misses = 0;
5514 #endif
5515
5516 static int
5517 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr)
5518 {
5519 int error;
5520 PATHCONF3args args;
5521 PATHCONF3res res;
5522 int douprintf;
5523 failinfo_t fi;
5524 rnode_t *rp;
5525 hrtime_t t;
5526
5527 if (nfs_zone() != VTOMI(vp)->mi_zone)
5528 return (EIO);
5529 /*
5530 * Large file spec - need to base answer on info stored
5531 * on original FSINFO response.
5532 */
5533 if (cmd == _PC_FILESIZEBITS) {
5534 unsigned long long ll;
5535 long l = 1;
5536
5537 ll = VTOMI(vp)->mi_maxfilesize;
5538
5539 if (ll == 0) {
5540 *valp = 0;
5541 return (0);
5542 }
5543
5544 if (ll & 0xffffffff00000000) {
5545 l += 32; ll >>= 32;
5546 }
5547 if (ll & 0xffff0000) {
5548 l += 16; ll >>= 16;
5549 }
5550 if (ll & 0xff00) {
5551 l += 8; ll >>= 8;
5552 }
5553 if (ll & 0xf0) {
5554 l += 4; ll >>= 4;
5555 }
5556 if (ll & 0xc) {
5557 l += 2; ll >>= 2;
5558 }
5559 if (ll & 0x2)
5560 l += 2;
5561 else if (ll & 0x1)
5562 l += 1;
5563 *valp = l;
5564 return (0);
5565 }
5566
5567 if (cmd == _PC_ACL_ENABLED) {
5568 *valp = _ACL_ACLENT_ENABLED;
5569 return (0);
5570 }
5571
5572 if (cmd == _PC_XATTR_EXISTS) {
5573 error = 0;
5574 *valp = 0;
5575 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5576 vnode_t *avp;
5577 rnode_t *rp;
5578 int error = 0;
5579 mntinfo_t *mi = VTOMI(vp);
5580
5581 if (!(mi->mi_flags & MI_EXTATTR))
5582 return (0);
5583
5584 rp = VTOR(vp);
5585 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER,
5586 INTR(vp)))
5587 return (EINTR);
5588
5589 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr);
5590 if (error || avp == NULL)
5591 error = acl_getxattrdir3(vp, &avp, 0, cr, 0);
5592
5593 nfs_rw_exit(&rp->r_rwlock);
5594
5595 if (error == 0 && avp != NULL) {
5596 VN_RELE(avp);
5597 *valp = 1;
5598 } else if (error == ENOENT)
5599 error = 0;
5600 }
5601 return (error);
5602 }
5603
5604 rp = VTOR(vp);
5605 if (rp->r_pathconf != NULL) {
5606 mutex_enter(&rp->r_statelock);
5607 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) {
5608 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf));
5609 rp->r_pathconf = NULL;
5610 }
5611 if (rp->r_pathconf != NULL) {
5612 error = 0;
5613 switch (cmd) {
5614 case _PC_LINK_MAX:
5615 *valp = rp->r_pathconf->link_max;
5616 break;
5617 case _PC_NAME_MAX:
5618 *valp = rp->r_pathconf->name_max;
5619 break;
5620 case _PC_PATH_MAX:
5621 case _PC_SYMLINK_MAX:
5622 *valp = MAXPATHLEN;
5623 break;
5624 case _PC_CHOWN_RESTRICTED:
5625 *valp = rp->r_pathconf->chown_restricted;
5626 break;
5627 case _PC_NO_TRUNC:
5628 *valp = rp->r_pathconf->no_trunc;
5629 break;
5630 default:
5631 error = EINVAL;
5632 break;
5633 }
5634 mutex_exit(&rp->r_statelock);
5635 #ifdef DEBUG
5636 nfs3_pathconf_cache_hits++;
5637 #endif
5638 return (error);
5639 }
5640 mutex_exit(&rp->r_statelock);
5641 }
5642 #ifdef DEBUG
5643 nfs3_pathconf_cache_misses++;
5644 #endif
5645
5646 args.object = *VTOFH3(vp);
5647 fi.vp = vp;
5648 fi.fhp = (caddr_t)&args.object;
5649 fi.copyproc = nfs3copyfh;
5650 fi.lookupproc = nfs3lookup;
5651 fi.xattrdirproc = acl_getxattrdir3;
5652
5653 douprintf = 1;
5654
5655 t = gethrtime();
5656
5657 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF,
5658 xdr_nfs_fh3, (caddr_t)&args,
5659 xdr_PATHCONF3res, (caddr_t)&res, cr,
5660 &douprintf, &res.status, 0, &fi);
5661
5662 if (error)
5663 return (error);
5664
5665 error = geterrno3(res.status);
5666
5667 if (!error) {
5668 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
5669 if (!nfs3_pathconf_disable_cache) {
5670 mutex_enter(&rp->r_statelock);
5671 if (rp->r_pathconf == NULL) {
5672 rp->r_pathconf = kmem_alloc(
5673 sizeof (*rp->r_pathconf), KM_NOSLEEP);
5674 if (rp->r_pathconf != NULL)
5675 *rp->r_pathconf = res.resok.info;
5676 }
5677 mutex_exit(&rp->r_statelock);
5678 }
5679 switch (cmd) {
5680 case _PC_LINK_MAX:
5681 *valp = res.resok.info.link_max;
5682 break;
5683 case _PC_NAME_MAX:
5684 *valp = res.resok.info.name_max;
5685 break;
5686 case _PC_PATH_MAX:
5687 case _PC_SYMLINK_MAX:
5688 *valp = MAXPATHLEN;
5689 break;
5690 case _PC_CHOWN_RESTRICTED:
5691 *valp = res.resok.info.chown_restricted;
5692 break;
5693 case _PC_NO_TRUNC:
5694 *valp = res.resok.info.no_trunc;
5695 break;
5696 default:
5697 return (EINVAL);
5698 }
5699 } else {
5700 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
5701 PURGE_STALE_FH(error, vp, cr);
5702 }
5703
5704 return (error);
5705 }
5706
5707 /*
5708 * Called by async thread to do synchronous pageio. Do the i/o, wait
5709 * for it to complete, and cleanup the page list when done.
5710 */
5711 static int
5712 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5713 int flags, cred_t *cr)
5714 {
5715 int error;
5716
5717 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5718 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5719 if (flags & B_READ)
5720 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
5721 else
5722 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
5723 return (error);
5724 }
5725
5726 static int
5727 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5728 int flags, cred_t *cr)
5729 {
5730 int error;
5731 rnode_t *rp;
5732
5733 if (pp == NULL)
5734 return (EINVAL);
5735 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
5736 return (EIO);
5737
5738 rp = VTOR(vp);
5739 mutex_enter(&rp->r_statelock);
5740 rp->r_count++;
5741 mutex_exit(&rp->r_statelock);
5742
5743 if (flags & B_ASYNC) {
5744 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr,
5745 nfs3_sync_pageio);
5746 } else
5747 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5748 mutex_enter(&rp->r_statelock);
5749 rp->r_count--;
5750 cv_broadcast(&rp->r_cv);
5751 mutex_exit(&rp->r_statelock);
5752 return (error);
5753 }
5754
5755 static void
5756 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr)
5757 {
5758 int error;
5759 rnode_t *rp;
5760 page_t *plist;
5761 page_t *pptr;
5762 offset3 offset;
5763 count3 len;
5764 k_sigset_t smask;
5765
5766 /*
5767 * We should get called with fl equal to either B_FREE or
5768 * B_INVAL. Any other value is illegal.
5769 *
5770 * The page that we are either supposed to free or destroy
5771 * should be exclusive locked and its io lock should not
5772 * be held.
5773 */
5774 ASSERT(fl == B_FREE || fl == B_INVAL);
5775 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
5776 rp = VTOR(vp);
5777
5778 /*
5779 * If the page doesn't need to be committed or we shouldn't
5780 * even bother attempting to commit it, then just make sure
5781 * that the p_fsdata byte is clear and then either free or
5782 * destroy the page as appropriate.
5783 */
5784 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) {
5785 pp->p_fsdata = C_NOCOMMIT;
5786 if (fl == B_FREE)
5787 page_free(pp, dn);
5788 else
5789 page_destroy(pp, dn);
5790 return;
5791 }
5792
5793 /*
5794 * If there is a page invalidation operation going on, then
5795 * if this is one of the pages being destroyed, then just
5796 * clear the p_fsdata byte and then either free or destroy
5797 * the page as appropriate.
5798 */
5799 mutex_enter(&rp->r_statelock);
5800 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
5801 mutex_exit(&rp->r_statelock);
5802 pp->p_fsdata = C_NOCOMMIT;
5803 if (fl == B_FREE)
5804 page_free(pp, dn);
5805 else
5806 page_destroy(pp, dn);
5807 return;
5808 }
5809
5810 /*
5811 * If we are freeing this page and someone else is already
5812 * waiting to do a commit, then just unlock the page and
5813 * return. That other thread will take care of commiting
5814 * this page. The page can be freed sometime after the
5815 * commit has finished. Otherwise, if the page is marked
5816 * as delay commit, then we may be getting called from
5817 * pvn_write_done, one page at a time. This could result
5818 * in one commit per page, so we end up doing lots of small
5819 * commits instead of fewer larger commits. This is bad,
5820 * we want do as few commits as possible.
5821 */
5822 if (fl == B_FREE) {
5823 if (rp->r_flags & RCOMMITWAIT) {
5824 page_unlock(pp);
5825 mutex_exit(&rp->r_statelock);
5826 return;
5827 }
5828 if (pp->p_fsdata == C_DELAYCOMMIT) {
5829 pp->p_fsdata = C_COMMIT;
5830 page_unlock(pp);
5831 mutex_exit(&rp->r_statelock);
5832 return;
5833 }
5834 }
5835
5836 /*
5837 * Check to see if there is a signal which would prevent an
5838 * attempt to commit the pages from being successful. If so,
5839 * then don't bother with all of the work to gather pages and
5840 * generate the unsuccessful RPC. Just return from here and
5841 * let the page be committed at some later time.
5842 */
5843 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
5844 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
5845 sigunintr(&smask);
5846 page_unlock(pp);
5847 mutex_exit(&rp->r_statelock);
5848 return;
5849 }
5850 sigunintr(&smask);
5851
5852 /*
5853 * We are starting to need to commit pages, so let's try
5854 * to commit as many as possible at once to reduce the
5855 * overhead.
5856 *
5857 * Set the `commit inprogress' state bit. We must
5858 * first wait until any current one finishes. Then
5859 * we initialize the c_pages list with this page.
5860 */
5861 while (rp->r_flags & RCOMMIT) {
5862 rp->r_flags |= RCOMMITWAIT;
5863 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
5864 rp->r_flags &= ~RCOMMITWAIT;
5865 }
5866 rp->r_flags |= RCOMMIT;
5867 mutex_exit(&rp->r_statelock);
5868 ASSERT(rp->r_commit.c_pages == NULL);
5869 rp->r_commit.c_pages = pp;
5870 rp->r_commit.c_commbase = (offset3)pp->p_offset;
5871 rp->r_commit.c_commlen = PAGESIZE;
5872
5873 /*
5874 * Gather together all other pages which can be committed.
5875 * They will all be chained off r_commit.c_pages.
5876 */
5877 nfs3_get_commit(vp);
5878
5879 /*
5880 * Clear the `commit inprogress' status and disconnect
5881 * the list of pages to be committed from the rnode.
5882 * At this same time, we also save the starting offset
5883 * and length of data to be committed on the server.
5884 */
5885 plist = rp->r_commit.c_pages;
5886 rp->r_commit.c_pages = NULL;
5887 offset = rp->r_commit.c_commbase;
5888 len = rp->r_commit.c_commlen;
5889 mutex_enter(&rp->r_statelock);
5890 rp->r_flags &= ~RCOMMIT;
5891 cv_broadcast(&rp->r_commit.c_cv);
5892 mutex_exit(&rp->r_statelock);
5893
5894 if (curproc == proc_pageout || curproc == proc_fsflush ||
5895 nfs_zone() != VTOMI(vp)->mi_zone) {
5896 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit);
5897 return;
5898 }
5899
5900 /*
5901 * Actually generate the COMMIT3 over the wire operation.
5902 */
5903 error = nfs3_commit(vp, offset, len, cr);
5904
5905 /*
5906 * If we got an error during the commit, just unlock all
5907 * of the pages. The pages will get retransmitted to the
5908 * server during a putpage operation.
5909 */
5910 if (error) {
5911 while (plist != NULL) {
5912 pptr = plist;
5913 page_sub(&plist, pptr);
5914 page_unlock(pptr);
5915 }
5916 return;
5917 }
5918
5919 /*
5920 * We've tried as hard as we can to commit the data to stable
5921 * storage on the server. We release the rest of the pages
5922 * and clear the commit required state. They will be put
5923 * onto the tail of the cachelist if they are nolonger
5924 * mapped.
5925 */
5926 while (plist != pp) {
5927 pptr = plist;
5928 page_sub(&plist, pptr);
5929 pptr->p_fsdata = C_NOCOMMIT;
5930 (void) page_release(pptr, 1);
5931 }
5932
5933 /*
5934 * It is possible that nfs3_commit didn't return error but
5935 * some other thread has modified the page we are going
5936 * to free/destroy.
5937 * In this case we need to rewrite the page. Do an explicit check
5938 * before attempting to free/destroy the page. If modified, needs to
5939 * be rewritten so unlock the page and return.
5940 */
5941 if (hat_ismod(pp)) {
5942 pp->p_fsdata = C_NOCOMMIT;
5943 page_unlock(pp);
5944 return;
5945 }
5946
5947 /*
5948 * Now, as appropriate, either free or destroy the page
5949 * that we were called with.
5950 */
5951 pp->p_fsdata = C_NOCOMMIT;
5952 if (fl == B_FREE)
5953 page_free(pp, dn);
5954 else
5955 page_destroy(pp, dn);
5956 }
5957
5958 static int
5959 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr)
5960 {
5961 int error;
5962 rnode_t *rp;
5963 COMMIT3args args;
5964 COMMIT3res res;
5965 int douprintf;
5966 cred_t *cred;
5967
5968 rp = VTOR(vp);
5969 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5970
5971 mutex_enter(&rp->r_statelock);
5972 if (rp->r_cred != NULL) {
5973 cred = rp->r_cred;
5974 crhold(cred);
5975 } else {
5976 rp->r_cred = cr;
5977 crhold(cr);
5978 cred = cr;
5979 crhold(cred);
5980 }
5981 mutex_exit(&rp->r_statelock);
5982
5983 args.file = *VTOFH3(vp);
5984 args.offset = offset;
5985 args.count = count;
5986
5987 doitagain:
5988 douprintf = 1;
5989 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT,
5990 xdr_COMMIT3args, (caddr_t)&args,
5991 xdr_COMMIT3res, (caddr_t)&res, cred,
5992 &douprintf, &res.status, 0, NULL);
5993
5994 crfree(cred);
5995
5996 if (error)
5997 return (error);
5998
5999 error = geterrno3(res.status);
6000 if (!error) {
6001 ASSERT(rp->r_flags & RHAVEVERF);
6002 mutex_enter(&rp->r_statelock);
6003 if (rp->r_verf == res.resok.verf) {
6004 mutex_exit(&rp->r_statelock);
6005 return (0);
6006 }
6007 nfs3_set_mod(vp);
6008 rp->r_verf = res.resok.verf;
6009 mutex_exit(&rp->r_statelock);
6010 error = NFS_VERF_MISMATCH;
6011 } else {
6012 if (error == EACCES) {
6013 mutex_enter(&rp->r_statelock);
6014 if (cred != cr) {
6015 if (rp->r_cred != NULL)
6016 crfree(rp->r_cred);
6017 rp->r_cred = cr;
6018 crhold(cr);
6019 cred = cr;
6020 crhold(cred);
6021 mutex_exit(&rp->r_statelock);
6022 goto doitagain;
6023 }
6024 mutex_exit(&rp->r_statelock);
6025 }
6026 /*
6027 * Can't do a PURGE_STALE_FH here because this
6028 * can cause a deadlock. nfs3_commit can
6029 * be called from nfs3_dispose which can be called
6030 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH
6031 * can call back to pvn_vplist_dirty.
6032 */
6033 if (error == ESTALE) {
6034 mutex_enter(&rp->r_statelock);
6035 rp->r_flags |= RSTALE;
6036 if (!rp->r_error)
6037 rp->r_error = error;
6038 mutex_exit(&rp->r_statelock);
6039 PURGE_ATTRCACHE(vp);
6040 } else {
6041 mutex_enter(&rp->r_statelock);
6042 if (!rp->r_error)
6043 rp->r_error = error;
6044 mutex_exit(&rp->r_statelock);
6045 }
6046 }
6047
6048 return (error);
6049 }
6050
6051 static void
6052 nfs3_set_mod(vnode_t *vp)
6053 {
6054 page_t *pp;
6055 kmutex_t *vphm;
6056
6057 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6058 vphm = page_vnode_mutex(vp);
6059 mutex_enter(vphm);
6060 if ((pp = vp->v_pages) != NULL) {
6061 do {
6062 if (pp->p_fsdata != C_NOCOMMIT) {
6063 hat_setmod(pp);
6064 pp->p_fsdata = C_NOCOMMIT;
6065 }
6066 } while ((pp = pp->p_vpnext) != vp->v_pages);
6067 }
6068 mutex_exit(vphm);
6069 }
6070
6071
6072 /*
6073 * This routine is used to gather together a page list of the pages
6074 * which are to be committed on the server. This routine must not
6075 * be called if the calling thread holds any locked pages.
6076 *
6077 * The calling thread must have set RCOMMIT. This bit is used to
6078 * serialize access to the commit structure in the rnode. As long
6079 * as the thread has set RCOMMIT, then it can manipulate the commit
6080 * structure without requiring any other locks.
6081 */
6082 static void
6083 nfs3_get_commit(vnode_t *vp)
6084 {
6085 rnode_t *rp;
6086 page_t *pp;
6087 kmutex_t *vphm;
6088
6089 rp = VTOR(vp);
6090
6091 ASSERT(rp->r_flags & RCOMMIT);
6092
6093 vphm = page_vnode_mutex(vp);
6094 mutex_enter(vphm);
6095
6096 /*
6097 * If there are no pages associated with this vnode, then
6098 * just return.
6099 */
6100 if ((pp = vp->v_pages) == NULL) {
6101 mutex_exit(vphm);
6102 return;
6103 }
6104
6105 /*
6106 * Step through all of the pages associated with this vnode
6107 * looking for pages which need to be committed.
6108 */
6109 do {
6110 /*
6111 * If this page does not need to be committed or is
6112 * modified, then just skip it.
6113 */
6114 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
6115 continue;
6116
6117 /*
6118 * Attempt to lock the page. If we can't, then
6119 * someone else is messing with it and we will
6120 * just skip it.
6121 */
6122 if (!page_trylock(pp, SE_EXCL))
6123 continue;
6124
6125 /*
6126 * If this page does not need to be committed or is
6127 * modified, then just skip it. Recheck now that
6128 * the page is locked.
6129 */
6130 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6131 page_unlock(pp);
6132 continue;
6133 }
6134
6135 if (PP_ISFREE(pp)) {
6136 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free",
6137 (void *)pp);
6138 }
6139
6140 /*
6141 * The page needs to be committed and we locked it.
6142 * Update the base and length parameters and add it
6143 * to r_pages.
6144 */
6145 if (rp->r_commit.c_pages == NULL) {
6146 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6147 rp->r_commit.c_commlen = PAGESIZE;
6148 } else if (pp->p_offset < rp->r_commit.c_commbase) {
6149 rp->r_commit.c_commlen = rp->r_commit.c_commbase -
6150 (offset3)pp->p_offset + rp->r_commit.c_commlen;
6151 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6152 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
6153 <= pp->p_offset) {
6154 rp->r_commit.c_commlen = (offset3)pp->p_offset -
6155 rp->r_commit.c_commbase + PAGESIZE;
6156 }
6157 page_add(&rp->r_commit.c_pages, pp);
6158 } while ((pp = pp->p_vpnext) != vp->v_pages);
6159
6160 mutex_exit(vphm);
6161 }
6162
6163 /*
6164 * This routine is used to gather together a page list of the pages
6165 * which are to be committed on the server. This routine must not
6166 * be called if the calling thread holds any locked pages.
6167 *
6168 * The calling thread must have set RCOMMIT. This bit is used to
6169 * serialize access to the commit structure in the rnode. As long
6170 * as the thread has set RCOMMIT, then it can manipulate the commit
6171 * structure without requiring any other locks.
6172 */
6173 static void
6174 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
6175 {
6176
6177 rnode_t *rp;
6178 page_t *pp;
6179 u_offset_t end;
6180 u_offset_t off;
6181
6182 ASSERT(len != 0);
6183
6184 rp = VTOR(vp);
6185
6186 ASSERT(rp->r_flags & RCOMMIT);
6187 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6188
6189 /*
6190 * If there are no pages associated with this vnode, then
6191 * just return.
6192 */
6193 if ((pp = vp->v_pages) == NULL)
6194 return;
6195
6196 /*
6197 * Calculate the ending offset.
6198 */
6199 end = soff + len;
6200
6201 for (off = soff; off < end; off += PAGESIZE) {
6202 /*
6203 * Lookup each page by vp, offset.
6204 */
6205 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
6206 continue;
6207
6208 /*
6209 * If this page does not need to be committed or is
6210 * modified, then just skip it.
6211 */
6212 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6213 page_unlock(pp);
6214 continue;
6215 }
6216
6217 ASSERT(PP_ISFREE(pp) == 0);
6218
6219 /*
6220 * The page needs to be committed and we locked it.
6221 * Update the base and length parameters and add it
6222 * to r_pages.
6223 */
6224 if (rp->r_commit.c_pages == NULL) {
6225 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6226 rp->r_commit.c_commlen = PAGESIZE;
6227 } else {
6228 rp->r_commit.c_commlen = (offset3)pp->p_offset -
6229 rp->r_commit.c_commbase + PAGESIZE;
6230 }
6231 page_add(&rp->r_commit.c_pages, pp);
6232 }
6233 }
6234
6235 #if 0 /* unused */
6236 #ifdef DEBUG
6237 static int
6238 nfs3_no_uncommitted_pages(vnode_t *vp)
6239 {
6240 page_t *pp;
6241 kmutex_t *vphm;
6242
6243 vphm = page_vnode_mutex(vp);
6244 mutex_enter(vphm);
6245 if ((pp = vp->v_pages) != NULL) {
6246 do {
6247 if (pp->p_fsdata != C_NOCOMMIT) {
6248 mutex_exit(vphm);
6249 return (0);
6250 }
6251 } while ((pp = pp->p_vpnext) != vp->v_pages);
6252 }
6253 mutex_exit(vphm);
6254
6255 return (1);
6256 }
6257 #endif
6258 #endif
6259
6260 static int
6261 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
6262 {
6263 int error;
6264 writeverf3 write_verf;
6265 rnode_t *rp = VTOR(vp);
6266
6267 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6268 /*
6269 * Flush the data portion of the file and then commit any
6270 * portions which need to be committed. This may need to
6271 * be done twice if the server has changed state since
6272 * data was last written. The data will need to be
6273 * rewritten to the server and then a new commit done.
6274 *
6275 * In fact, this may need to be done several times if the
6276 * server is having problems and crashing while we are
6277 * attempting to do this.
6278 */
6279
6280 top:
6281 /*
6282 * Do a flush based on the poff and plen arguments. This
6283 * will asynchronously write out any modified pages in the
6284 * range specified by (poff, plen). This starts all of the
6285 * i/o operations which will be waited for in the next
6286 * call to nfs3_putpage
6287 */
6288
6289 mutex_enter(&rp->r_statelock);
6290 write_verf = rp->r_verf;
6291 mutex_exit(&rp->r_statelock);
6292
6293 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr);
6294 if (error == EAGAIN)
6295 error = 0;
6296
6297 /*
6298 * Do a flush based on the poff and plen arguments. This
6299 * will synchronously write out any modified pages in the
6300 * range specified by (poff, plen) and wait until all of
6301 * the asynchronous i/o's in that range are done as well.
6302 */
6303 if (!error)
6304 error = nfs3_putpage(vp, poff, plen, 0, cr);
6305
6306 if (error)
6307 return (error);
6308
6309 mutex_enter(&rp->r_statelock);
6310 if (rp->r_verf != write_verf) {
6311 mutex_exit(&rp->r_statelock);
6312 goto top;
6313 }
6314 mutex_exit(&rp->r_statelock);
6315
6316 /*
6317 * Now commit any pages which might need to be committed.
6318 * If the error, NFS_VERF_MISMATCH, is returned, then
6319 * start over with the flush operation.
6320 */
6321
6322 error = nfs3_commit_vp(vp, poff, plen, cr);
6323
6324 if (error == NFS_VERF_MISMATCH)
6325 goto top;
6326
6327 return (error);
6328 }
6329
6330 static int
6331 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr)
6332 {
6333 rnode_t *rp;
6334 page_t *plist;
6335 offset3 offset;
6336 count3 len;
6337
6338
6339 rp = VTOR(vp);
6340
6341 if (nfs_zone() != VTOMI(vp)->mi_zone)
6342 return (EIO);
6343 /*
6344 * Set the `commit inprogress' state bit. We must
6345 * first wait until any current one finishes.
6346 */
6347 mutex_enter(&rp->r_statelock);
6348 while (rp->r_flags & RCOMMIT) {
6349 rp->r_flags |= RCOMMITWAIT;
6350 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
6351 rp->r_flags &= ~RCOMMITWAIT;
6352 }
6353 rp->r_flags |= RCOMMIT;
6354 mutex_exit(&rp->r_statelock);
6355
6356 /*
6357 * Gather together all of the pages which need to be
6358 * committed.
6359 */
6360 if (plen == 0)
6361 nfs3_get_commit(vp);
6362 else
6363 nfs3_get_commit_range(vp, poff, plen);
6364
6365 /*
6366 * Clear the `commit inprogress' bit and disconnect the
6367 * page list which was gathered together in nfs3_get_commit.
6368 */
6369 plist = rp->r_commit.c_pages;
6370 rp->r_commit.c_pages = NULL;
6371 offset = rp->r_commit.c_commbase;
6372 len = rp->r_commit.c_commlen;
6373 mutex_enter(&rp->r_statelock);
6374 rp->r_flags &= ~RCOMMIT;
6375 cv_broadcast(&rp->r_commit.c_cv);
6376 mutex_exit(&rp->r_statelock);
6377
6378 /*
6379 * If any pages need to be committed, commit them and
6380 * then unlock them so that they can be freed some
6381 * time later.
6382 */
6383 if (plist != NULL) {
6384 /*
6385 * No error occurred during the flush portion
6386 * of this operation, so now attempt to commit
6387 * the data to stable storage on the server.
6388 *
6389 * This will unlock all of the pages on the list.
6390 */
6391 return (nfs3_sync_commit(vp, plist, offset, len, cr));
6392 }
6393 return (0);
6394 }
6395
6396 static int
6397 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6398 cred_t *cr)
6399 {
6400 int error;
6401 page_t *pp;
6402
6403 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6404 error = nfs3_commit(vp, offset, count, cr);
6405
6406 /*
6407 * If we got an error, then just unlock all of the pages
6408 * on the list.
6409 */
6410 if (error) {
6411 while (plist != NULL) {
6412 pp = plist;
6413 page_sub(&plist, pp);
6414 page_unlock(pp);
6415 }
6416 return (error);
6417 }
6418 /*
6419 * We've tried as hard as we can to commit the data to stable
6420 * storage on the server. We just unlock the pages and clear
6421 * the commit required state. They will get freed later.
6422 */
6423 while (plist != NULL) {
6424 pp = plist;
6425 page_sub(&plist, pp);
6426 pp->p_fsdata = C_NOCOMMIT;
6427 page_unlock(pp);
6428 }
6429
6430 return (error);
6431 }
6432
6433 static void
6434 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6435 cred_t *cr)
6436 {
6437 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6438 (void) nfs3_sync_commit(vp, plist, offset, count, cr);
6439 }
6440
6441 static int
6442 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr)
6443 {
6444 int error;
6445 mntinfo_t *mi;
6446
6447 mi = VTOMI(vp);
6448
6449 if (nfs_zone() != mi->mi_zone)
6450 return (EIO);
6451
6452 if (mi->mi_flags & MI_ACL) {
6453 error = acl_setacl3(vp, vsecattr, flag, cr);
6454 if (mi->mi_flags & MI_ACL)
6455 return (error);
6456 }
6457
6458 return (ENOSYS);
6459 }
6460
6461 static int
6462 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr)
6463 {
6464 int error;
6465 mntinfo_t *mi;
6466
6467 mi = VTOMI(vp);
6468
6469 if (nfs_zone() != mi->mi_zone)
6470 return (EIO);
6471
6472 if (mi->mi_flags & MI_ACL) {
6473 error = acl_getacl3(vp, vsecattr, flag, cr);
6474 if (mi->mi_flags & MI_ACL)
6475 return (error);
6476 }
6477
6478 return (fs_fab_acl(vp, vsecattr, flag, cr));
6479 }
6480
6481 static int
6482 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr)
6483 {
6484 int error;
6485 struct shrlock nshr;
6486 struct nfs_owner nfs_owner;
6487 netobj lm_fh3;
6488
6489 if (nfs_zone() != VTOMI(vp)->mi_zone)
6490 return (EIO);
6491
6492 /*
6493 * check for valid cmd parameter
6494 */
6495 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
6496 return (EINVAL);
6497
6498 /*
6499 * Check access permissions
6500 */
6501 if (cmd == F_SHARE &&
6502 (((shr->s_access & F_RDACC) && !(flag & FREAD)) ||
6503 ((shr->s_access & F_WRACC) && !(flag & FWRITE))))
6504 return (EBADF);
6505
6506 /*
6507 * If the filesystem is mounted using local locking, pass the
6508 * request off to the local share code.
6509 */
6510 if (VTOMI(vp)->mi_flags & MI_LLOCK)
6511 return (fs_shrlock(vp, cmd, shr, flag, cr));
6512
6513 switch (cmd) {
6514 case F_SHARE:
6515 case F_UNSHARE:
6516 lm_fh3.n_len = VTOFH3(vp)->fh3_length;
6517 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
6518
6519 /*
6520 * If passed an owner that is too large to fit in an
6521 * nfs_owner it is likely a recursive call from the
6522 * lock manager client and pass it straight through. If
6523 * it is not a nfs_owner then simply return an error.
6524 */
6525 if (shr->s_own_len > sizeof (nfs_owner.lowner)) {
6526 if (((struct nfs_owner *)shr->s_owner)->magic !=
6527 NFS_OWNER_MAGIC)
6528 return (EINVAL);
6529
6530 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) {
6531 error = set_errno(error);
6532 }
6533 return (error);
6534 }
6535 /*
6536 * Remote share reservations owner is a combination of
6537 * a magic number, hostname, and the local owner
6538 */
6539 bzero(&nfs_owner, sizeof (nfs_owner));
6540 nfs_owner.magic = NFS_OWNER_MAGIC;
6541 (void) strncpy(nfs_owner.hname, uts_nodename(),
6542 sizeof (nfs_owner.hname));
6543 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len);
6544 nshr.s_access = shr->s_access;
6545 nshr.s_deny = shr->s_deny;
6546 nshr.s_sysid = 0;
6547 nshr.s_pid = ttoproc(curthread)->p_pid;
6548 nshr.s_own_len = sizeof (nfs_owner);
6549 nshr.s_owner = (caddr_t)&nfs_owner;
6550
6551 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) {
6552 error = set_errno(error);
6553 }
6554
6555 break;
6556
6557 case F_HASREMOTELOCKS:
6558 /*
6559 * NFS client can't store remote locks itself
6560 */
6561 shr->s_access = 0;
6562 error = 0;
6563 break;
6564
6565 default:
6566 error = EINVAL;
6567 break;
6568 }
6569
6570 return (error);
6571 }