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Abstract
Unified Parallel C (UPC) is an emerging parallel programming
language that is based on a shared memory paradigm. MPI has been
a widely ported and dominant parallel programming model for the
past couple of decades. Real-life scientific applications require a
lot of investment by domain scientists. Many scientists choose the
MPI programming model as it is considered low-risk. It is unlikely
that entire applications will be re-written using the emerging UPC
language (or PGAS paradigm) in the near future. It is more likely
that parts of these applications will be converted to newer models.
This requires that underlying implementation of system software be
able to support both UPC and MPI simultaneously. Unfortunately,
the current state-of-the-art of UPC and MPI interoperability leaves
much to be desired both in terms of performance and ease-of-use.

In this paper, we propose “Integrated Native Communication
Runtime” (INCR) for MPI and UPC communications on Infini-
Band clusters. Our library is capable of supporting both UPC and
MPI communications simultaneously. This runtime is based on
the widely used MVAPICH (MPI over InfiniBand) Aptus runtime,
which is known to scale to tens-of-thousands of cores. Our evalua-
tion reveals that INCR is able to deliver equal or better performance
compared to the existing UPC runtime - GASNet on InfiniBand
verbs. We observe that with UPC NAS benchmarks CG and MG
(class B) at 128 processes, we outperform current GASNet imple-
mentation by 10% and 23%, respectively.

1. Introduction
Modern high-end computing (HEC) systems allow scientists and
engineers to tackle grand challenge problems in their respective
domains and make significant contributions to their fields. Ex-
amples of such problems include astro-physics, earthquake anal-
ysis, weather prediction, nanoscience modeling, multiscale and
multiphysics modeling, biological computations, computational
fluid dynamics. The Message Passing Interface (MPI) is a very
widely used parallel programming model. Scientific applications
rely heavily on the performance and portability offered by it. Al-
though MPI has been widely used for the past couple of decades,
recently, there is an effort to improve programmer productivity
for parallel applications. The hypothesis is that for several classes
of applications, especially irregular applications, shared memory
programming is much easier than explicit message passing. Ad-
ditionally, language-based parallelism constructs provide greater
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flexibility of expression, analysis by software tools and optimiza-
tion opportunities. For example, unneeded barriers in an application
can be syntactically analyzed by tools and compiled away, elimi-
nating the need for programmers to manually analyze dependencies
and removing barriers manually. Often programmers tend to insert
more barriers than strictly required for safety.

Unified Parallel C (UPC) [27] is an emerging language for par-
allel programming, that is based on extensions to ISO C99. It pro-
vides parallel iterations and remote memory access among a host
of other features. UPC is a member of the Partitioned Global Ad-
dress Space (PGAS) family of languages. Several flavors of UPC
are available, along with different implementations of UPC com-
piler and runtime on a variety of architectures including commod-
ity clusters and leadership class machines such as the Blue Gene/P.
The Berkeley UPC implementation [19] is one of the open-source
and popular implementations that support high-performance inter-
connects such as Myrinet, InfiniBand and Quadrics through the
portable GASNet runtime [10]. Even though UPC is an emerging
language, there are not many real-life scientific applications using
it as their primary parallel programming model. Real life scientific
applications require a lot of investment by domain scientists for
design and verification, and their life cycles are in decades. Since
MPI is standardized, adopted and portable, it provides a low-risk
implementation choice. It is unlikely that entire applications will
be re-designed using UPC in the near future. It is more likely that
parts of these applications (primarily written in MPI) will be con-
verted to UPC, resulting in a “hybrid” application.

InfiniBand [14] is an industry standard interconnection technol-
ogy that has gained wide acceptance and is rapidly becoming one
of the dominant interconnection technologies in HEC domain. Ac-
cordingly, the size of InfiniBand clusters is growing as well, with
the Nebulae cluster in China having 120,640 cores. Design and im-
plementation of highly scalable InfiniBand runtime is not a trivial
task as the software interface provided by verbs is at a very low-
level. Using verbs, various buffer management, connection man-
agement, message coalescing, and reliability mechanisms need to
be explored [15–18, 26].

Thus, there are two emerging trends: need for hybrid program-
ming support and the need for extreme scalability on InfiniBand
clusters. In order to realize the vision of highly scalable hybrid
computing, the following questions need to be answered:

1. Can a communication library be designed for UPC that provides
excellent performance and scalability on very large InfiniBand
clusters?

2. Can this unified communication library support both UPC and
MPI communications in a manner that does not degrade perfor-
mance for either?

In this paper, we aim to answer the above questions. We have
extended the MVAPICH-Aptus [17] runtime, which is known to be
one of the most scalable InfiniBand runtime, to support UPC com-



munications. MVAPICH/MVAPICH2 [23] are very widely used
MPI libraries, supporting MPI-1 and MPI-2 standards specifically
designed for InfiniBand. It is currently being used by more than
1,185 organizations in 59 countries. This extended MVAPICH li-
brary is capable of acting as a new GASNet communication con-
duit. Since these extensions are made to an MPI library, they do not
interfere in any way with the existing MPI communication infras-
tructure nor affect MPI communication performance (MPI appli-
cations simply ignore the extensions). Our evaluation reveals that
this new extended MVAPICH conduit not only able to match the
existing GASNet InfiniBand conduit in both microbenchmarks and
application-level evaluation; but also to improve scalability signif-
icantly. We observe that with UPC NAS benchmarks CG and MG
(class B) at 128 processes, the new design outperforms the current
GASNet implementation by 10% and 23%, respectively.

The rest of the paper is organized as follows. In Section 2, we
describe background material for this work along with a discussion
of related work. We contrast our work with existing software stacks
and research. Then, in Section 3, we describe our design in detail.
We present our evaluations in Section 4. Finally, we conclude and
illustrate future directions in Section 5.

2. Background and Related Work
In this Section, we describe associated background work that is rel-
evant to the contributions of this paper. We also cover other recent
and related work in this area. We first start with the lowest Infini-
Band layer. Then, we describe recent work in designing scalable
communication techniques for MPI on InfiniBand. After that, we
review work in UPC and the GASNet communication system. Fi-
nally, we compare and contrast our work with recent related efforts
to develop a common communication subsystem for multiple pro-
gramming models.

2.1 InfiniBand Overview
InfiniBand [14] is an industry standard switched fabric that is de-
signed for interconnecting nodes in HEC clusters. It is a high-
speed, general purpose I/O interconnect that is widely used by sci-
entific computing centers world-wide. The recently released TOP-
500 rankings in June 2010 reveal that more than 40% of the com-
puting systems use InfiniBand as their primary interconnect. The
yearly growth rate of InfiniBand in the TOP500 systems is pegged
at 30%, indicating a strong momentum in adoption. It is also gain-
ing ground in the commercial domain with the recent convergence
around RDMA (Remote Direct Memory Access) over Converged
Enhanced Ethernet (RoCE).

The InfiniBand specification clearly demarcates the duties of
hardware (such as Host Channel Adapters (HCAs)) and software.
Upper-level software uses an interface called verbs to access the
functionality provided by HCAs and other network equipment
(such as switches). The verbs interface is a low-level communi-
cation interface that follows the Queue Pair model. Communi-
cation end-points are required to establish a queue pair between
themselves. Each queue pair has a certain number of work queue
elements. Upper-level software places a work request on the queue
pair that is then processed by the HCA. When a work element is
completed, it is placed in the completion queue. Upper level soft-
ware can detect completion by polling the completion queue.

Additionally, there are different types of Queue Pairs based on
the type of transport used. There are Reliably Connected (RC)
queue pairs that provide reliable transmission (retransmissions after
packet losses are performed by the HCA). These RC queue pairs
need to be established uniquely for each communicating pair. This
implies an O(n2) memory usage (for a system with N processes).
Another type of queue pair is the Unreliable Datagram (UD). This
queue pair type does not provide reliable transmission although it

has a significant memory advantage – only one UD QP is capable of
communicating with all remote processes. Thus, the memory usage
of UD QP is O(n) (for a system with N processes).

Yet another feature of InfiniBand is Remote Direct Memory Ac-
cess (RDMA). This feature allows software to remotely read mem-
ory contents of another remote process without any software in-
volvement at the remote side. This feature is very powerful and can
be used to implement high-performance communication protocols.

As indicated above, the verbs software layer is very low-level,
and the responsibility of communication protocols, buffer manage-
ment mechanisms, connection management techniques etc. are left
to the upper level software. The following Section 2.2 describes
some recent work in designing scalable mechanisms using these
verbs. Not all features are mentioned in this section and readers
are encouraged to peruse the InfiniBand specification [14] for more
details.

2.2 Scalable MPI Design over InfiniBand: MVAPICH-Aptus
MPI has been the dominant parallel programming model for the
past couple of decades. It has been widely ported and several
open-source implementations have been made available. It has also
achieved very good performance and scalability. As a result, all
modern super-computers support it. During the past several years,
InfiniBand has made great inroads into the HPC domain. Clusters
using InfiniBand have been growing in size rapidly. One of the
largest clusters is the Nebulae cluster in China with 120,640 cores.
As indicated in the previous section, InfiniBand offers a low-level
verbs interface with several types of Queue Pairs, with varying lev-
els of services. This enables upper-level software, such as MPI im-
plementations, to design flexible and high-performance connection
management, buffer management, coalescing strategies, etc.

MVAPICH/MVAPICH2 [23] are high-performance implemen-
tations of MPI-1 and MPI-2 interfaces on InfiniBand, iWARP and
RoCE (RDMA over Converged Ethernet). The internal design of
MVAPICH has been systematically designed to achieve very good
scalability by exploiting various InfiniBand features, such as Un-
reliable Datagrams [16], Shared Receive Queues (SRQ) [26], and
eXtended Reliable Connections (XRC) [18] along with connection
management strategies such as On-demand connections and buffer-
ing strategies for message coalescing [15] to improve memory ef-
ficiency. All of these optimizations have been combined into one
unified runtime, called MVAPICH-Aptus [17]. To the best of our
knowledge, this is the most scalable runtime on InfiniBand that of-
fers high-performance and is open-source. Our team is in the pro-
cess of bringing this framework into the MVAPICH2 library, so that
MPI-2 applications can also leverage this scalable runtime.

2.3 UPC, PGAS and GASNet Communication System
Unified Parallel C (UPC) [27] is an emerging parallel program-
ming language that aims to increase programmer productivity and
application performance by introducing parallel programming and
remote memory access constructs in the language. UPC is based
on the Partitioned Global Address Space (PGAS) programming
model. The PGAS programming model allows programmers to
view a distributed memory supercomputer as a global address
space, that may be partitioned to improve performance. There
are several other PGAS programming languages, namely X10 [7],
Chapel [6] and HPF [21], along with Global Address Space li-
braries such as Global Arrays [11].

The runtime implementations of UPC have been demonstrated
to be scalable and provide very good performance to end appli-
cations through fine-grained remote memory accesses [5] and im-
proved communication overlap [24]. In particular, the Blue Gene
implementation of UPC, developed by IBM, has been demonstrated
to be highly scalable [3]. In this paper, we focus on the InfiniBand



design and implementation of UPC through the popular GASNet
communication library [10]. GASNet for InfiniBand clusters has
only been mildly optimized with Firehose [4], which is a strategy to
manage remote keys (required for RDMA). It is to be noted that as
compared to the exhaustive scalability and optimization work car-
ried out to scale MVAPICH/MVAPICH2 up to the level of 81,920
cores (of Pleiades at NASA) and 62,976-core (of Ranger at TACC),
not much recent work has taken place in the InfiniBand implemen-
tation of GASNet. In particular, even on-demand connections and
shared receive queues, which are considered to be fundamental re-
quirements to scale InfiniBand runtime, are missing in the current
GASNet implementation. In this paper, we present our strategy to
unify the runtime of MVAPICH and GASNet in such a way that the
InfiniBand communication schemes are unified between them in an
efficient manner. Thus, our work adds major scalability features to
the GASNet implementation on InfiniBand.

2.4 Common Communication Subsystems for Multiple
Programming Model Support

High-performance communication libraries for HEC systems have
historically been very closely tied with their corresponding pro-
gramming models and their implementations. This has been due to
the fact that each communication layer has been optimized heav-
ily to suit the particular programming model and its requirements.
Some libraries, such as ARMCI [12] are deployed along with MPI
in a side-by-side manner to enable Global Arrays applications that
occasionally use utility functions from MPI. There have been some
efforts to unify the communication subsystems, such as CCS by
Buntinas, et. al [9]. It is to be noted that even though the CCS layer
had the potential to support multiple programming models, it did
not offer the best performance as compared to GASNet (please re-
fer to Fig. 2 of [9]), especially for short messages. Also, the authors
of [9] did not evaluate whether CCS will be suitable for MPI itself
as a communication layer or not. Additionally, there was no evalua-
tion of UPC or GASNet on top of CCS. In this paper, we describe a
truly unified communication library which provides the best perfor-
mance to both UPC and MPI libraries in conjunction with thorough
evaluation of the entire UPC stack through our new communication
runtime.

The Low-level Application Programming Interface (LAPI) [13],
is a unified communication layer that is known to support both MPI
and pure LAPI communications. The LAPI layer is available only
on IBM systems and is not available on general commodity cluster
systems with InfiniBand. In this respect, it can potentially support
GASNet implementation over LAPI along with MPI over LAPI.
We have not yet found any publicly available document describing
the feasibility of this approach. Additionally, publically available
documents, such as [1] describe the limitations of LAPI supporting
both MPI and LAPI communications. In particular, it mentions
that in the event of concurrent communications, the DMA Receive
Buffer may be too small to contain packets from both LAPI and
MPI, and packets may be dropped, impairing performance. Further,
the MP CSS INTERRUPT variable, that allows incoming messages
to cause interrupts and message progress, is available to MPI only.
LAPI communications cannot be progressed using this mechanism.
We believe that the MVAPICH-Aptus design is not constrained
by these limitations. First, DMA buffer space is shared among
all communication contexts. Second, MVAPICH-Aptus follows a
“low-water-mark” based flow control mechanism. In this mode,
interrupts do not need to be generated or each incoming message;
rather only one interrupt is generated when DMA buffer space
is low. Thus, we believe that this is a much more flexible buffer
management strategy compared to the one described for LAPI.

The MPI-2 RMA interface has been criticized before for its in-
adequacy as a compiler target [8]. The MPI community is actively

discussing the upcoming MPI-3 standard. The MPI-3 RMA Work-
ing Group [25] is attempting to completely revamp the MPI-2 RMA
semantics in such a way that supporting PGAS languages becomes
simpler at the MPI level. However, these discussions are a long
way from inclusion in the formal standard. Our work is intended to
influence these discussions by providing critical data about a high-
performance UPC implementation in an existing MPI stack.

3. INCR: Design Requirements and Solutions
In this section, we discuss the design requirements and solutions
for the implementation of our Integrated Communication Runtime
(INCR) for InfiniBand clusters.

3.1 Design Requirements
The major design requirement of our work is to enable simultane-
ous MPI and UPC communications without imposing any perfor-
mance penalties on either MPI or UPC. That is, using our runtime,
UPC programs should get identical or better performance than cur-
rently available software (and the same for MPI applications). An-
other design requirement is to eliminate buffer waste inside the
communication library. For example, we envision that the solution
should not require separate communication resources, such as con-
nections, buffers etc. for supporting simultaneous communications.

3.2 Approach
Currently, there exist several approaches that can be deployed on
commodity InfiniBand clusters. We have outlined some of these
approaches in Figure 1. Each implementation option is referred to
by the name given below the stack.

The left-most alternative demonstrates that pure-MPI operations
can work through the MPI standard implementations of MVA-
PICH on InfiniBand. The second alternative, marked “GASNet-
IBV” indicates the currently available GASNet implementation on
OpenFabrics verbs. This implementation is on the lowest software
layer made available by InfiniBand vendors. Currently, the two ap-
proaches “MPI” and “GASNet-IBV” can be combined together to
support simultaneous communications of hybrid MPI and UPC ap-
plications. However, this approach suffers from two main draw-
backs: (a) Communication progress of both UPC and MPI are sep-
arate, and it is possible to deadlock UPC and MPI by not progress-
ing in their respective communications [2] and (b) It wastes com-
munication resources, since both MPI and UPC allocate their own
connection and buffer resources.

Another approach is to use the “GASNet-MPI” stack for both
MPI and UPC communications. This mode has the added advan-
tage of progressing both MPI and UPC communications simulta-
neously. The primary disadvantage of this mode is that there is
a mismatch of Active Messages (a fundamental design point of
GASNet), and the MPI-1 point-to-point primitives. Due to this mis-
match, there is a performance penalty imposed on most operations.
As discussed in Section 2, MPI-2 RMA is not a viable target for
compilers [8]. Thus, there is a performance penalty associated with
the “GASNet-MPI” stack.

In our design, presented in the rightmost stack, “GASNet-
INCR”, we extend the existing MVAPICH-Aptus runtime to sup-
port native active messages. In addition, we design a new com-
munication conduit for GASNet that supports this interface. Using
this approach, both UPC and MPI communication resources are
shared. Further, we have the benefit of utilizing several common
communication related optimizations that have been designed for
MPI over the past several years (described in Section 2) for UPC
communications as well.
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Figure 1. An overview of various communication stack options available for MPI and UPC applications and our contribution

3.3 Internal Implementation Details
Our design requirements are to enable the highest possible perfor-
mance for both GASNet and MPI communications. We made the
following changes to implement MVAPICH-INCR.

Packet Headers: MPI communications stacks are required to carry
message-matching information triplet ({src, tag, context}),
to enable the tag-matching semantics of MPI. This represents an
overhead of 12 bytes per packet. Additionally, packets are required
to carry information for credits (such as the last received packet) for
flow-control. Overall, the minimum MPI packet header is 20 bytes.
We have decided that this overhead is too heavy for GASNet. Thus,
we have added extra packet types in the MVAPICH-Aptus imple-
mentation. Accordingly, the packets used by GASNet messages
are handled completely separately from the MPI packets. This ap-
proach allows us to share common optimizations from the MPI
communications layer, while providing less overhead for GASNet
communications. Our GASNet-INCR has only four bytes of extra
header on top of GASNet-specific fields. We believe that in the
future this can be improved upon as well.

Extended Interfaces: As indicated earlier in this Section, we have
extended the communication implementation of the MVAPICH-
Aptus runtime to support native Active Messages. In addition, we
have also implemented the extended GASNet interfaces for natively
supporting RDMA. Below is a short description of the interface.

Active Messaging Interfaces: These are the new active messaging
functions that are implemented inside MVAPICH-Aptus.

1) int incr send short am no args(uint32 t dest, uint32 t

token, uint16 t handler)

This function implements sending very short messages without
any arguments to a remote destination. This is an optimization over
the short message functions which need to send arguments. Since
the handler at the remote end expects no arguments, the space for
arguments in the message packet can be optimized out.

2) int incr send short am with args(uint32 t dest, uint32 t

token, uint16 t handler, va list argptr, uint8 t numargs)

This function implements sending short messages to remote
destinations. Short active messages do not carry any data payload.

3) int incr send medium msg(uint16 t dest, uint16 t token,

uint8 t handler, void * source addr, uint32 t nbytes,

va list argptr, uint8 t numargs)

This function implements sending medium size messages with
data payload. The data payload can be sent over a bounce buffer
implementation that is implemented using native RDMA [20]. It is
to be noted that using MVAPICH-Aptus, RDMA connections are
only opened in an on-demand basis and not an all-to-all manner
during communication startup.

4) int incr send long msg(uint32 t dest, uint32 t token,

uint16 t handler, void * source addr, uint32 t nbytes,

uint32 t lkey, va list argptr, uint8 t numargs, void *

dest addr, uint32 t rkey, incr handle t *handle ptr)

This function implements sending large messages. Since large
messages may take a long time to send, this interface call supports
returning a handle to the communication request. Using this han-
dle, this call may be used in a non-blocking manner. Long messages
are always sent using InfiniBand RDMA, with reliable connections
(RC) established in an on-demand fashion.

Extended Remote Memory Interfaces: This interface implements
the GASNet extended interface. These focus on efficient remote
memory access. These functions currently do not return any error
status, i.e. all errors in remote memory accesses are considered fa-
tal.

1) void incr inline put (uint32 t dest, void *rem addr,

void *local addr, size t nbytes, uint32 t rkey,

incr handle t *handle ptr)



This function sends a very small (< 128 bytes) data payloads
directly to remote memory using RDMA. This utilizes the Infini-
Band “inline” send operation, which reduces sender side overhead
of DMAs. As long as send work queue elements (WQEs) are avail-
able, this function completes the put on returning.

2) void incr put (uint32 t dest, void *rem addr, void *

local addr, size t nbytes, uint32 t rkey, incr handle t *

handle ptr, uint32 t lkey)

This function is used for remote put. The payload data is put di-
rectly using RDMA write. If no send work queue elements (WQEs)
are available, then this data can be buffered internally (decision
made based on message size), and the call returns immediately.
To test for completion of the data transfer, the handle needs to be
checked upon. Since the call is implemented using RDMA put, an
RC connection is used (set up in an on-demand fashion).

3) void incr put bulk (uint32 t dest, void *rem addr, void

*local addr, size t nbytes, uint32 t rkey, incr handle t *

handle ptr, uint32 t lkey)

This function is also used for remote put. This is for support-
ing the GASNet put bulk interface, in which the local memory is
guaranteed to be untouched until the put operation is completed, so
that data need not be buffered internally if the work queue elements
(WQEs) are not available.

4) void incr get (uint32 t dest, void *rem addr, void *

local addr, size t nbytes, uint32 t rkey, uint32 t lkey,

incr handle t *handle ptr)

This function is used for remote get operations. This maps
directly to RDMA Read operation, which uses RC connection (set
up in an on-demand fashion).

4. Experimental Results
In this section, we compare performance evaluation results of the
three approaches: GASNet-IBV, GASNet-MPI and GASNet-INCR
described in section 3.2. The existing implementation of GASNet
on OpenFabrics verbs is called GASNet-IBV and the implementa-
tion on MPI is called GASNet-MPI. GASNet-INCR, which is our
contribution in this paper, is the GASNet implementation over ex-
tended MVAPICH-Aptus runtime. MVAPICH-1.1 was used as the
base MPI version for this work.

GASNet consists of core APIs and extended APIs. The core
API interface is a narrow interface based on the Active Message
paradigm. Extended APIs provide a richly expressive and flexible
interface that provides medium and high-level operations on remote
memory and collective operations [10]. GASNet-MPI has only the
core APIs implemented whereas GASNet-IBV and GASNet-INCR
have the extended APIs for one sided put and get operations. As
mentioned in Section 2, the GASNet-MPI implementation cannot
utilize the MPI2-RMA interface for put and get due to several
restrictions and is limited to only using the core APIs. We used
Berkeley UPC version 2.10.2 for our experimentation. GASNet
was configured with --enable-pshm, which makes use of shared
memory for intra-node communication for all network conduits.

We compared these three designs from different angles. These
include microbenchmark-level performance evaluation, scalability
analysis based on memory footprint (memory consumption of each
process as the total number of processes increase), and performance
analysis of different NAS benchmarks using these conduits. De-
tailed analysis of these performance evaluation is presented in the
following sections.

4.1 Experimental Platform
We used three different clusters for our experimental evaluations.
Cluster A consists of four Intel Nehalem machines equipped with
ConnectX QDR HCAs. Each node has eight Intel Xeon 5500 pro-
cessors organized into two sockets of four cores each clocked at
2.40 GHz with 12 GB of main memory. Cluster B consists of 32
Intel Clovertown based systems equipped with ConnectX DDR
HCAs. Each node in this cluster has eight Intel Xeon processors,
organized into two sockets of four cores each clocked at 2.33 GHz
with 6 GB of main memory. Cluster C consists of eight AMD
Barcelona hosts. Each node has four sockets each with a Quad-Core
AMD Opteron 8350 2GHz Processor with 512KB L2 cache and 2
MB L3 cache per core. Each node has a Mellanox MT25418 dual-
port ConnectX HCA. RedHat Enterprise Linux Server 5 was used
on all machines along with OFED version 1.4.2. We used Cluster
A for the microbenchmark-level experiments, Cluster B for scala-
bility analysis and Cluster C for application level evaluations.

4.2 Microbenchmark Level Evaluation
We chose three representative benchmarks for the microbenchmark-
level performance analysis. These include the performance evalua-
tion of UPC calls, upc memput, upc memget and bupc memput si
gnal. The upc memput call writes the specified amount of data
bytes to the remote side. Similarly, upc memget fetches the speci-
fied amount of data bytes from remote side. bupc memput signal
is one of the UPC extensions proposed by Berkeley Lab. It performs
the same data movement semantics as that of upc memput, and up-
dates the specified semaphore on the remote side. The update of
semaphore on the remote side signals the global completion of data
movement. We used Cluster A for microbenchmark performance
evaluation. In this section we present results for inter-node commu-
nication. Since we configured GASNet with --enable-pshm, all
three appraches GASNet-INCR, GASNet-MPI, GASNet-IBV will
perform exactly the same inside a node. Therefore, we do not need
to discuss intra-node performance in this section.

In upc memput and upc memgetmicrobenchmarks, upc memput
and upc memget were called in the sender thread for message sizes
varying from one byte to two megabytes. The receiver thread waits
on a barrier. Time taken for the upc call for each of these mes-
sage sizes is reported. We have split the latency results into two
graphs, one showing the results for small payload sizes (1byte to
2K bytes) and other one for large payload sizes (4KB to 2MB).
Microbenchmark results are shown in Figures 2 and 3.

The results indicate that the performance of GASNet-INCR
is very similar to that of the high performance GASNet-IBV.
Since GASNet-MPI does not have the GASNet extended APIs,
upc memget and upc memput calls are translated into active mes-
sages These active messages are exchanged using MPI send/recv
calls. This involves not only the overhead of translating into active
messages, but also the extra MPI headers that these messages have
to carry. But for GASNet-IBV and GASNet-INCR, upc memput
and upc memget calls are translated into one sided RDMA put/get
operations. This explains the huge performance difference between
GASNet-MPI and the other two GASNet implementations.

We used a ping-pong test in bupc memput signalmicrobench-
mark. The sender thread calls bupc memput signal and then
calls bupc sem wait. The receiver thread calls bupc sem wait
and then calls bupc memput signal. The bupc sem wait call
causes the thread to wait until the semaphore gets incremented. The
bupc sem wait call in the receiver thread gets unblocked when
the data movement initiated by the sender thread is over. Similarly,
the semaphore in the sender thread gets unblocked when the data
movement initiated by receiver thread is over. The test was also
done for message sizes varying from one byte to two megabytes.
The one-way latency numbers are reported. Here also, the latency



numbers are shown in two different graphs for fine-grain analy-
sis. The observed performance results of bupc memput signal
benchmark is similar to that of upc memget and upc memput
benchmarks. The results are shown in Figure 4.

The microbenchmark performance results indicate that the
GASNet-INCR delivers similar performance as that of GASNet-
IBV conduit, and it even outperforms GASNet-IBV conduit for
small payload sizes in bupc memput signal microbenchmark.
GASNet-MPI performs worse in all microbenchmarks.

4.3 Scalability Evaluation
In order to analyze the scalability aspect of the GASNet-INCR
design, we conducted memory scalability tests. In these tests, we
study how the overall memory consumption of an individual pro-
cess changes as the total size of the process group increases. The
UPC (and MPI) programming models are “fully connected”, i.e. at
any instant any thread can send a message to any other thread, and
vice-versa. Therefore, it is incumbent on the runtime to either a)
establish communication channels across threads before the appli-
cation attempts communication, or b) provide an out-of-band tech-
nique by which communication can be set up on-demand. Since
communication channels consume memory, establishing them con-
sumes memory from the system. Another aspect of memory con-
sumption by communication channels, is that of the choice of low-
level transport. As indicated in Section 2.1 and Section 2.2, unless
the design of the InfiniBand runtime is done using scalable trans-
ports, such as Unreliable Datagram and eXtended Reliable Con-
nections, increasing process group size results in negative impact
on memory requirement scalability.

We used a simple UPC hello world program in this experiment.
We measured the memory footprint of the process, with number
of connections (processes) ranging from 16 to 256. The memory
footprint analysis results are shown in Figure 5. We used Cluster B
for scalability analysis.

It was observed that for a 256 process UPC hello world execu-
tion, each process consumed about 227 MB in case of GASNet-
INCR conduit, 265 MB in case of GASNet-IBV conduit and 237
MB in case of GASNet-MPI conduit. It can be noticed that, with
increase in number of connections, memory footprint increases al-
most linearly for GASNet-IBV conduit, where as memory footprint
of GASNet-INCR and GASNet-MPI conduits remain almost con-
stant. The low memory footprint of GASNet-INCR and GASNet-
MPI conduits is because it uses the MVAPICH-Aptus runtime,
which is known to scale to tens of thousands of cores. Please re-
fer to Section 2.2 for more details on the scalability features in
MVAPICH-Aptus.

Analyzing the gradient of the scalability performance results, it
can be noted that, for GASNet-IBV, the memory footprint increases
by around 128KB with every additional process, where as the mem-
ory footprint of GASNet-INCR and GASNet-MPI conduit remains
constant. If we extrapolate the memory footprint for 10,000 pro-
cesses, then memory footprint of GASNet-IBV will be around 1.4
GB per process, whereas the memory footprint of GASNet-INCR
process will be around 250 to 300 MB per process. This shows that
our design is highly scalable.

4.4 MPI Application Evaluation
In this section, we present experimental results that compare pure
MPI performance between MVAPICH-1.1 (which uses Aptus run-
time) and MVAPICH-INCR (which includes Aptus runtime, but
with INCR extensions). The results are presented in Figure 6. In
this figure we see the performance of MVAPICH-INCR normalized
to that of MVAPICH-1.1, i.e. performance of MVAPICH-1.1 is des-
ignated to be 1. Based on the experimental results, we can see that
MVAPICH-INCR performs virtually identically to MVAPICH-1.1.

This result is expected as the extensions to support GASNet-INCR
do not interfere with the MPI functionality. With this, we can con-
clude that the INCR library does not degrade MPI performance.

4.5 UPC Application Level Evaluation
To evaluate our GASNet-INCR design, we analyzed its perfor-
mance with the NAS benchmarks [22] written in UPC. The ver-
sion of the UPC NPB Benchmark Suite used was 2.4. This version
is distributed along with Berkeley UPC version 2.10.2 and can be
found under upc-tests/NPB2.4. Among the NAS benchmarks,
we chose to focus on Conjugate Gradient benchmark (CG), 3-D
FFT PDE benchmark (FT) and the Multi-Grid benchmark (MG),
for our analysis. These benchmarks were run for different problem
sizes (class B and C) with 64 and 128 processes. We chose not to
present experimental data for the NAS EP benchmark as it has very
little communication. We used cluster C for these experiments.

The CG benchmark has the smallest problem size (75,000 for
Class B and 150,000 for Class C) among the three benchmarks
and has a relatively more frequent communication pattern. The
communication calls from the UPC version of the NAS benchmarks
mainly consist of point-to-point calls, but many of them are due to
the fact that the benchmarks do not utilize UPC collectives. Rather,
they implement collectives based on point-to-point operations. The
execution times for these different NAS benchmarks are shown in
Figure 7.

The performance results observed for the CG and MG bench-
marks are indicated in Figures 7(a) and 7(b). For 128 process
MG and CG benchmark, GASNet-INCR performs 23% and 11%
faster as compared to GASNet-IBV conduit, respectively. One of
the main difference in point-to-point performance (since the bench-
mark does not use collectives), is that GASNet-INCR implements
a weak flow control method that is receiver driven, as opposed to
sender keeping track of remote credits. This results in better uti-
lization of concurrency in the network. Both GASNet-IBV and
GASNet-INCR outperform GASNet-MPI. As can be seen from the
microbenchmark results, this is due to poorer performance of the
MPI conduit as it is trying to simulate active messages. The Class
C version of the benchmarks generate larger volume of data, which
makes the runtime more dependent on bandwidth of the network,
and the differences between the three conduits is less pronounced.

We experimented with two versions of the FT benchmark, one
unmodified (i.e. from the UPC NAS 2.4 distribution), and the sec-
ond was slightly modified to reduce network hot-spotting. We mod-
ified it to remove an artificial limitation of the benchmark. The per-
formance results for the FT benchmark are shown in Figures 7(c)
and 7(d). Figure 7(c) shows the performance of the unmodified ver-
sion, whereas Figure 7(d) shows the performance of the modified
version. We note that the modified version performs significantly
better than the unmodified version, e.g. the modified version per-
forms 21% better than the unmodified version for FT Class C at
128 processes using GASNet-IBV conduit. The time spent in FT
is dominated by the Alltoall phase, where distributed matrices are
transposed. The unmodified version performs the transpose using
the pattern: for(i=0;i<NTHREADS;i++) { upc memget(i); }

Obviously, this results in hot-spotting threads as all threads try
to simultaneously access memory from thread 0, then thread 1 and
so on. The modified version simply changes the access pattern to
distribute it better between the threads: for(i=0;i<NTHREADS;i++)

{ upc memget(i+MYTHREAD%NTHREADS); } It is evident from the
results that even in the modified version of FT, GASNet-INCR is
able to provide equal or better performance (3% better for FT, Class
C on 128 processes).
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Figure 2. Memput performance
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Figure 4. Berkeley UPC (signal) memput performance
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5. Conclusions and Future Work
During the past few years, there has been an increasing interest
in improving programmer productivity for scientific applications.
UPC and other PGAS languages have emerged as alternatives to
the still popular MPI programming model. At the same time, In-
finiBand technology is being widely deployed and very large clus-
ters, consisting of many tens-of-thousands of cores are being de-
ployed for conducting ground-breaking science. In this context,
there is a need for a communication library that supports both UPC
and MPI programming models, provides excellent performance for
them and is highly scalable. In this paper, we have presented our
designs for Integrated Native Communication Runtime (INCR) for
MPI and PGAS on InfiniBand clusters. Our design and evaluation
reveal that we are able to achieve our primary design objectives.
For UPC NAS benchmarks CG and MG (class B) at 128 processes,
GASNet-INCR outperforms the GASNet-IBV runtime by 10% and
23%, respectively. Further, memory scalability analysis reveals that
GASNet-INCR is highly scalable.

In the future, we aim to continue working in this direction. In
this paper we presented performance results for UPC using our
communication runtime. We plan to extend our evaluation to hy-
brid MPI and UPC applications. Our team is involved in optimiza-
tions of several well-known applications from the San Diego Super-
computer Center and Texas Advanced Computing Center. We plan
to investigate optimization opportunities by using hybrid program-
ming models in those applications. Our aim is to enable generalized
PGAS support in INCR in the future.
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