Efficient Hardware Multicast Group Management
for Multiple MPI Communicators over InfiniBand*

Amith R. Mamidala, Hyun-Wook Jin, and Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University
{mamidala, jinhy, panda}@cse.ohio-state.edu

Abstract. MPI provides a set of primitives that allow processes to dynamically
create communicators on the fly. This set of primitives can be exploited by the
applications where only a certain group of processes need to participate at
any given time. Also, these primitives play an important role in the context
of dynamic process management of MPI-2. Special attention has to be paid
in creating MPI communicators with InfiniBand’s hardware multicast support
as it involves the high overhead of interaction between the application and
an external multicast management entity. In this paper, we propose different
design alternatives of efficiently creating the communicators dynamically. The
basic idea behind the schemes proposed is to remove most of the overhead of the
hardware multicast group construction from the critical path of the application.
Our results indicate that by using Multicast Pool and Lazy approaches of group
construction proposed in the paper, we can significantly reduce the overhead by
a factor of as much as 4.8 and 3.9, repectively, compared to the Basic approach.
Keywords: MPI, Communicator, Multicast, InfiniBand and Subnet Manage-
ment

1 Introduction

Message Passing Interface(MPI) [10] programming model has become the de-facto stan-
dard to develop parallel applications. MPI provides a rich collection of point-to-point
and collective communication primitives for the application to take advantage of. These
primitives are associated with a well defined Communicator object in MPI. Commu-
nicators provide a mechanism to construct distinct communication spaces for process
groups to operate, isolating them from the rest of the communication flow. Also, they
encapsulate several internal communication data structures during the program execu-
tion.

InfiniBand Architecture (IBA) [6] which is emerging as the next generation inter-
connect for I/O and interprocessor communication, has several features which directly
impact the performance of the application. One of the notable features of InfiniBand
is its support for hardware multicast. By using this feature, a message posted to a
hardware multicast group is delivered to all the processes attached to this group in an
efficient and scalable manner. In our earlier research, we have shown that significant
performance can be achieved by leveraging this primitive to implement collective opera-
tions like MPI Bcast, MPI_Barrier and MPI_Allreduce [7] [8]. One primary assumption
taken in the above approaches is that all the processes communicate within a single

* This research is supported in part by Department of Energy’s Grant #DE-FC02-
01ER25506; National Science Foundation’s grants #CCR-0204429, #CCR-0311542 and
#CNS-0403342; grants from Intel and Mellanox; and equipment donations from Intel, Mel-
lanox, AMD and Apple.

communicator context. Thus, it was suffice to construct a single hardware multicast
group statically at the initialization phase serving all the processes.

However, majority of the applications use more than one communicator object dur-
ing their execution. This is because all the processes may not need to communicate
with each other. Also, the creation of a new communicator is imperative in the context
of dynamic process management of MPI-2, where new processes can be spawned from
an already existing group of processes. To utilize the hardware multicast of InfiniBand,
these communicators have to be mapped to hardware multicast groups and this map-
ping needs to be done on the fly. More importantly, the multicast groups have to be
dynamically set up.

In IBA, construction of hardware multicast groups involves a series of management
actions. Some of these involve the interaction of the MPI processes with an external IBA
multicast management and the rest pertain to the fabric configuration by the multicast
management entity. Only after the successful completion of these management actions
the multicast group can be used. Depending on the size of the hardware multicast group
and the IBA fabric, all these tasks can take considerable amount of time. From the
MPI application perspective, the overhead of these operations should be as minimal as
possible.

In this paper, we present several ways of constructing hardware multicast groups dy-
namically. We propose several design alternatives to efficiently map the communicators
to these newly created hardware multicast groups. Our designs of using Multicast Pool
and Lazy approaches of group construction outperform the Basic approach by a factor
of as much as 4.8 and 3.9, respectively, on a 32-node cluster. We have implemented our
proposed designs and integrated them into MVAPICH |[2], a popular implementation of
MPI over InfiniBand which is being used by more than 230 organizations world-wide.
The rest of the paper is organized as follows. In Section 2 we provide the background,
Section 3 provides the motivation for our work, Section 4 presents the various design
alternatives followed by performance evaluation, related work and conclusion.

2 InfiniBand Hardware Multicast Groups

The InfiniBand Architecture (IBA) [6] defines a switched network fabric for intercon-
necting processing nodes and I/O nodes. It provides a communication and management
infrastructure for inter-processor communication and I/O. Especially, it provides sup-
port for hardware multicast. A hardware multicast group in IBA is realized as a set of
ports connected together using a logical spanning tree. Each hardware multicast group
has a unique Multicast Group IDentifier (MGID). The routing of multicast packets
posted on a multicast group is handled using routing tables present in all the partici-
pating switches of the IBA fabric. The nodes join and leave a multicast group through a
management action involving Subnet Management and Subnet Administration classes
of IBA management. In the remaining part of the paper we use the term multicast
management entity to describe the body which implements the functionality of these
classes.

The multicast management entity is responsible for handling all the operations
specific to multicast group construction from the end nodes. These operations are
the following: Multicast Group Create which is issued by an end node to create a
multicast group. This is an explicit operation in IBA to provide a single control of group
characteristics like Message Transfer Unit, etc. and allow members to join subversively.
Multicast Group Join which is issued by the end node to join the multicast group and
Multicast Group Leave which is issued for leaving the group. All these requests are
transported using MAnagement Datagrams called MADs. The multicast management
entity on receiving the Join/Leave requests, constructs the multicast spanning tree and

updates the participating switches in the IBA fabric with the new routing information.

3 Motivation: Mapping between Multicast Groups and MPI

Communicators
Communicators play an important role during MPI communication. Communicator
objects encapsulate information about all the processes that communicate with each
other. This is required for the underlying MPI implementation which interacts with
the network device in the forwarding of the messages.

One important information which is required in a communicator to support hard-
ware multicast is that of Multicast Group IDentifier (MGID). Consider a scenario
where one process wants to send a message to all the other processes in the communi-
cator. This process issues a MPI_Bcast call with the communicator object as one of its
parameter. The underlying MPI layer then posts the message to the multicast group
identified by MGID and the actual forwarding is automatically taken care of by the
IBA layer.

P NO MULTICAST GROUP
] MANAGEMENT ENTITY

v

SWITCH
(4-PORT)

L_RANK =1

COMMUNICATOR

Fig. 2. Multicast Group Setup Operations

Fig.1. Mapping between IBA Multicast
Groups and MPI Communicators

Figure 1 illustrates the relationship between the communicators and the hardware
multicast groups. Let us consider an MPI application consisting of five processes, (P0-
P4) as an example. These processes are launched on a subnet consisting of four end
nodes (NO-N3) connected by a switch. Processes with global ranks three, four and
five (i.e., P2, P3 and P4) are present in one communicator. The local ranks of these
processes in the communicator are indicated in the figure. For these processes to use
hardware multicast, the communicator has to be mapped to the hardware multicast
group consisting of port numbers 2 and 3.

In the remaining sections of the paper, we explain how this mapping is done during
communicator creation. An important factor to consider is that issuing the Create/Join
requests mentioned in the earlier section does not imply that the hardware multicast
group is ready for use. This is because the multicast management entity has to first
process these requests and construct a spanning tree containing the participating ports.
Second, the routing tables in the fabric have to be updated to reflect the logical tree
topology. The IBA specification does not define any specific mechanism of informing
the processes of the completion of these tasks. Moreover, on large scale clusters, setting
up multicast routing information can take considerable time if the size of the multicast
group is comparable to the cluster size. This leads to the following questions:

1. How can the MPI application know when the multicast group is ready for use?

2. Can we minimize the overhead of multicast group construction from the MPI
perspective?

We address these challenges in the following sections of the paper.

4 Communicator Creation Mechanism

Though there are two types of communicators intra and inter defined in MPI, we focus
on intra communicators in this paper. We have implemented all our designs using
the MPI_Comm create function. The inputs to this function are an already existing
communicator object, a process group object comprising of a new subset of processes
and the final communicator object. MPI_Comm_create is a collective call invoked by all
the processes in the existing communicator. In the following discussions, we focus on
the communicator creation in the context of mapping these to the hardware multicast
groups. All the other steps like the assignment of a unique context and the local ranks
have already been done by the time we start constructing the multicast group.

4.1 Basic Design
The following steps are involved in the basic communicator construction. All of these

are illustrated in Figure 2.
Multicast create and join: In this step, the process whose local rank is zero issues

a create request to the multicast management entity specifying the Multicast Group
IDentifier (MGID)(step 1 in Figure 2). The remaining processes then issue join requests
to the multicast management entity using the same MGID (step 2 in Figure 2). All
these requests carry the port identifiers so that the management entity knows which
all ports would like to join a multicast group. The multicast management entity after
receiving and validating the requests computes a logical spanning tree containing the
ports specified in the requests. It then updates all the routing tables of the participating
switches in the fabric (step 3 in Figure 2). At this point of time, the set up of hardware
multicast group is complete.

However, the participating processes have no knowledge of this information. One
approach to accomplish this would be to let the multicast management entity notify
the MPI application after updating the routing tables. Another approach would be to
let the MPI application discover about the completion independently. We have taken
the latter approach in all our designs as it does not depend on any particular imple-
mentation of the multicast management entity. We refer to this approach as multicast
testing.

Multicast testing: In this approach, the following algorithm is implemented by
all the processes after they finish issuing the requests. Process with rank zero who is
the root, posts a multicast ping message to the new hardware multicast group and
waits for Acks from all the other processes. If the routing has been done, the message
is received by all the processes and these processes soon post the Acks to the root. On
the other hand, if routing is not complete then the message may not arrive at some of
the processes. These processes block waiting for the ping message. Meanwhile, the root
retransmits the ping message after a certain time-out interval. This process repeats
until everyone has received the ping message.

4.2 Lazy Approach

Although the Basic design is good for its simplicity, it is blocking in nature. The
application has to wait for the multicast management entity to process the requests
and update the routing tables. Until then, all the processes block in the multicast
testing. Depending on the size of the cluster and the multicast group this can take a

considerable amount of time. Instead of doing the multicast testing in an eager fashion
within the communicator creation call, we do this in a lazy manner by calling this
routine every time a collective call is made. We do this until the multicast testing phase
is over. We accomplish this by making the multicast testing as a non-blocking routine.

Asynchronous return: The new multicast testing is implemented in the following
manner. The root process posts the ping message and checks for the arrival of the
Acks from the rest of the processes. It does not block for the Acks to arrive. In the
subsequent collective calls to this routine, it repeatedly checks for the progress of the
Acks. It reposts the ping message only if the timeout is exceeded. The root keeps an
estimate of the time elapsed by recording the time-stamps in the communicator object.
The remaining processes behave in a similar fashion. They check for the ping messages
in a non-blocking fashion and post the Acks soon after discovering the ping message.

Point-to-Point fall back: One important issue requiring detailed attention is
the progress of the collective communication call before the communicator is ready
for hardware multicast. In our approach, all the collective communication traffic is
transmitted via point-to-point messaging until the root discovers that the routing has
been done.

This approach overcomes the drawbacks of the Basic design. Due to the asyn-
chronous nature of the multicast testing routine, overlap of computation as well as
communication is easily achievable.

4.3 Multicast Group Pool Based Design

Though the Lazy approach can effectively hide the overhead of hardware multicast
group construction in the MPI application, it still has some drawbacks. The benefits
of hardware multicast in an application is reduced if the set-up time of the multicast
groups is high and the collective communication follows the setting up of these commu-
nicators. Using our earlier design, the communication traffic falls back to point-to-point
if the multicast groups are not set up. But, this does not improve the performance of
the application.

Multicast Group Pool: We overcome the drawback mentioned above using a
complementary approach of setting up communicators explained as follows. The basic
idea in this design is to have a certain pre-defined pool of multicast groups already
constructed. These groups contain all the processes to begin with. In the communicator
construction routine, instead of participating nodes joining the multicast group, the
non-participating nodes leave a multicast group chosen from the pool. There are several
advantages of using this approach. First of all, since the multicast groups are already
set-up the routing tables in the fabric are in place. So, when the application calls
communicator creation function we can use the multicast group directly and we avoid
the overhead of the multicast testing phase. This approach considerably improves the
utility of the hardware multicast groups in an application. Secondly, the multicast pool
can be maintained easily as most of the overhead is due to the multicast management
entity and can be done in the background. We now explain the steps involved in this
design.

When a call to the communicator creation is made, first a multicast group is chosen
from the available list of multicast groups already constructed. If this pool is empty
we fall back to the Lazy approach explained in the previous section. Once an available
multicast group is obtained, the non-participating processes issue leave requests to
the management entity. The list of non-participating process can be easily obtained
by subtracting the set of the processes involved in the communicator from the global
set involving all the processes. This global set is the MPI.GROUP_WORLD process
group in MPI. Once a multicast group is consumed from the pool, it is immediately

replenished by making all the processes issue requests for group construction. We also
need to check for multicast testing before including the group in the pool. However,
this check is done in the background by the application. The initial pool can be either
constructed by the management entity or by the MPI application in the initialization
phase. We have taken the latter approach in our implementation.

5 Performance Evaluation

Each node in our experimental testbed has dual Intel Xeon 2.66 GHz processors, 512
KB L2 cache, and PCI-X 64-bit 133 MHz bus. They are equipped with MT23108
InfiniBand HCAs with PCI-X interfaces. An InfiniScale MTS14400 switch is used to
connect all the nodes. OpenSM, version 1.7.0, is the multicast management entity used
in our tests.

50 . . !
250 ———————— —
MADs: max ——+— 45| oo 1
MADs: 500 - —
; 40 ¢ leave - 4
200 MADs:1 -] . 35l multicast testing =
~ e e D L)
[X 1S L
E 150} > 3 I .
- e 25
e g 20
% 100 f °
® 15 ¢
50 | 10 +
5 L
o_ .. O 10 15 20 3 3
10 15 20 25 30 35 40 45 50 5 10 15 20 25 30
. nodes
transaction timeout (ms) .))
Fig. 3. Tuning of Multicast Testing Fig. 4.'Overhead of Basic Multicast Group
Operations

5.1 Basic Hardware Group Setup Latencies
OpenSM has two parameters which affect the performance of multicast group creation.

These are: 1) timeout which is the time for transaction timeouts in milliseconds and
2) maxMADs which is the number of MADs that can be outstanding on the wire at
any given point of time. We measure multicast testing to tune these parameters as this
reflects the time taken by OpenSM to configure routing tables. Figure 3 shows these
results. From these we have chosen 10 ms for timeout and the number of outstanding
MADs is set to maximum for OpenSM to deliver best performance.

Figure 4 indicates the results of the basic multicast group operations like create,
join and leave. We also present the multicast testing time for varying number of nodes.
As the figure indicates, multicast testing overhead is very high compared to the la-
tencies of issuing create, join or leave requests. This is because as explained in the
previous sections, after the requests are issued the management entity has to compute
the spanning tree and update routing information of the switches in the fabric.

5.2 Effective Latency of Suggested Schemes
To compare the different schemes suggested in the paper we have measured the effective

latency which is the latency of MPI_Bcast operation together with the communicator
creation time. We have chosen the size of the message to be 1024 bytes in all our
tests. The benchmark is constructed by calling communicator creation followed by the
communication calls as many as the number of iterations specified. This is done for
communicator sizes of 16 and 32 respectively.

In Figure 5 we measure the effective latencies for varying number of iterations for all
the three schemes: Basic, Lazy and Pool. We have also taken the traditional point-to-
point collectives as the reference. We refer to this as the Original design in the figures.

wol 7 7 Toriginal ——] wol — = 77 Torigina ——]
° Pool - Pool -
120 ¢) Lazy = | 120ty , Lazy x|
s Basic —e s Basic =
w100 | %] w100 §
2 . 2 \ O
> 80F 3 80 R e .
% 60 _ % 60r .
| — - B
40 1 40t g
20 +] 20 -
100 200 300 400 500 600 700 800 9001000 100 200 300 400 500 600 700 800 9001000
iterations iterations
Fig. 5. Effective Latency with Collectives 16 ~ Fig. 6. Effective Latency with Collectives 32
processes processes

As shown in the figure, the Pool based design outperforms all the rest. This is because
multicast testing phase can be fully overlapped with the communicator creation oper-
ations and also the multicast group is immediately available. For the Lazy approach,
we see the benefits of hardware multicast with the increasing number of iterations.
This is because of the increasing percentage of communication using hardware multi-
cast rather than point-to-point. The basic design performs poorly compared to all the
designs. This is due to the high overhead associated with the multicast testing which is
not overlapped with communication. Figure 6 shows the same trend for communicator
size of 32. Note that the latencies of Pool and Lazy are almost the same for 16 and 32
for higher number of iterations. This is due to the scalability of hardware multicast.

To understand the overlap with computation we have introduced some computation
between the communicator creation and the communication in the benchmark used for
the above experiments. Figures 7 and 8 show the trend with increasing computation
for sizes 16 and 32 respectively. The Lazy approach due to its asynchronous nature
can overlap communicator creation with computation where as the Basic cannot. The
Pool based design on the other hand can immediately take the benefits of hardware
multicast. However, the initial latencies for size 32 are higher than for size 16 due to the
increased overhead of creating larger hardware multicast group. As Figure8 indicates,
the Pool based design and the Lazy approaches improve the effective latency by a factor
of 4.9 and 3.8, respectively.

wol ~ original ——] mol ~ 7 orignal ——]
Pool - Pool -
120 ¢ Lazy = 120 Lazy -~
Basic = Basic =
w100 @ 100
2 . a 2
2 80f ° ° i y 80— T e 1
£ 2 e s s
g 60w . ® 60 o < .
e S P e R -
QO T S ey 40 b
20 f 1 20 ¢
5 10 15 20 25 30 35 5 10 15 20 25 30 35
computation time (ms) computation time (ms)

Fig. 7. Effective Latency with Computation = Fig. 8. Effective Latency with Computation
and Collectives 16 processes and Collectives 32 processes

6 Related Work

Various aspects of subnet management like subnet discovery, routing and setting up
of forwarding tables have been studied using simulation techniques by the authors
in [3] [4] [9]. Paper [5] deals with implementing MPI collective operations using IP
multicast over Fast Ethernet. In [11], the authors propose different designs for con-
structing IP multicast groups. Also, collectives have been implemented using hardware
multicast and NACK-based schemes in [1]. Our work differs from these as we provide
dynamic schemes of hardware multicast group construction in the context of InfiniBand
and we overlap these with the application progress.

7 Conclusions and Future Work

In this paper, we propose efficient schemes of dynamically constructing communicators
with hardware multicast support in InfiniBand. The basic idea behind the schemes is
to overlap the group construction with the progress of the application. The Multicast
Pool and the Lazy approaches proposed in this paper move most of the overhead of
multicast group creation out of the critical path of the application execution. We have
evaluated these schemes together with the Basic scheme and found that the Multicast
Pool performs the best of all the three followed by the Lazy scheme. Multicast Pool
and Lazy schemes improve the Effective Latency by a factor of 4.9 and 3.8 respectively.
In our future work, we would like to evaluate the impact of these schemes on a range
of MPT applications with and without dynamic process creation.

Acknowledgements We would like to thank Eitan Zahavi, Dror Goldenberg and
Eitan Rabin from Mellanox for providing helpful comments.

References

1. Multicast collectives. http://vmi.ncsa.uiuc.edu.

2. MVAPICH: MPI over InfiniBand Project. http://nowlab.cis.ohio-state.edu/projects/mpi-
iba/.

3. A. Bermudez, R. Casado, F. J. Quiles, T. M. Pinkston, and J. Duato. Evaluation of a
Subnet Management Mechanism for InfiniBand Networks. In Proceedings of ICPP, 2003.

4. A. Bermudez, R. Casado, F. J. Quiles, T. M. Pinkston, and J. Duato. On the InfiniBand
Subnet Discovery Process. In Proceedings of Cluster Computing, 2003.

5. H. A. Chen, Y. O. Carrasco, and A. W. Apon. MPI Collective Operations over IP Mul-
ticast. In Workshop PC-NOW 2000, 2000.

6. InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.2.
http://www.infinibandta.org, October 2004.

7. J. Liu, A. R. Mamidala, and D. K. Panda. Fast and Scalable MPI-Level Broadcast using
InfiniBand’s Hardware Multicast Support. In Proceedings of IPDPS, 2004.

8. A. R. Mamidala, J. Liu, and D. K. Panda. Efficient Barrier and Allreduce InfiniBand
Clusters using Hardware Multicast and Adaptive Algorithms . In Proceedings of Cluster
Computing, 2004.

9. J. C. Sancho, A. Robles, and J. Duato. Effective Strategy to Compute Forwarding Tables
for InfiniBand Networks. In Proceedings of ICPP, 2001.

10. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-The Complete
Reference. Volume 1 - The MPI-1 Core, 2nd edition. The MIT Press, 1998.

11. X. Yuan, S. Daniels, A. Faraj, and A. Karwande. Group Management Schemes for Im-
plementing MPI Collective Communication over IP-Multicast. In The 6th International
Conference on Computer Science and Informatics, Durham, NC, March 8-14 2002.

