

Leveraging Network-level parallelism with Multiple Process-Endpoints for MPI

Amit Ruhela, Bharath Ramesh, Sourav Chakraborty, Hari Subramoni,

Jahanzeb Maqbool Hashmi, and Dhabaleswar K. (DK) Panda E-mail: { ruhela.2, Ramesh.113, chakraborty.52, subramoni.1, hashmi.29, panda.2 } @ osu.edu

Department of Computer Science and Engineering

Current and Next-Generation Applications

urce : QSTAF

Blue Brain Cell Atlas

https://abp.edlich/nexus/cell-atlas

The first digital 3D Cell Atlas for the whole mouse brain

Source : HPCWire

Drivers of HPC

Multi-/Many-core Processors

High Performance
Interconnects - InfiniBand,
OmniPath, EFA
<1usec latency, 100Gbps+
Bandwidth>

Accelerators / Coprocessors high compute density, high performance/watt

SSD, NVMe-SSD, NVRAM

Source : Nodealodaststoragebsite

- Multi-core/many-core technologies
- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
 - Single Root I/O Virtualization (SR-IOV)
- Accelerators (GPUs, FPGAs, Intel Xeon Phi)
- Solid State Drives (SSDs), NVM, Parallel Filesystems, Object Storage Clusters

Summit@ORNL

Sierra@LL

Drivers of HPC

Message Passing Interface (MPI) is the de-facto programming model for writing parallel applications

- MVAPICH2
- Intel MPI
- Open MPI
- Cray MPI
- IBM Spectrum MPI
- And many more...

MPI offers various communication primitives and data layouts

- One-sided Communication
- Point -to-point communication
- Collective Communication

Source : Company Website

Goal: Design High Performance and Scalable Collective algorithm by exploiting capabilities of modern Hardware

Motivations

- 1. Collective operations e.g. MPI_Bcast are commonly used across parallel applications, owing to their ease of use and performance portability
- 2. Processor and network architectures are constantly evolving multi-core/many-core architectures, InfiniBand HCA, etc.
- 3. Existing algorithms for broadcast communication do not effectively utilize the high degree of parallelism and increased message rate capabilities offered by modern architecture
 - Resources are underutilized
- 4. Essential to design new algorithms that exploits features of emerging systems and deliver good performance

Design space of Collective Communication

Motivation: One-to-All Communication

Single pair of communication among leader nodes

Egress bandwidth not fully utilized for small messages

Early designs tried to improve inter-node communication(Next Slide)

Not efficient for small messages

MOTIVATION: One-to-All Communication

Motivation: Multi-pair P2P

Issue:

• Few pairs of communication results in reduced throughput

Motivation: One-to-All P2P

Motivation: Inter-node Latency

Observations:

 Both sender and receiver side latencies are inversely proportional to number of send processes on source node

Design overview of Broadcast

Commerciation

- No change in existing intra-node algorithms
- Leverage multi-endpoints on root-node for concurrent inter-node communication
- Three designs proposed
 - Design 1: Provides good performance for small system size
 - Design 2: Provides scalability to Design 1
 - Design 3: Tuned version of proposed design 1 and 2, also called Tuned HYbrid Multi-endpoint (THYME)

Design 1- MEP Flat Inter-Node Communication

[a]: Root/Leader process copies data to the shared memory

[b]: Non-leader processes read data from shared memory

[c]: Muti-endpoints forward data to leader processes on other nodes

Non-Root nodes follows the same steps [a] and [b]

Design 2: MEP K-nomial Communication

Scalable Multi-endpoints design with degree K (=3)

- [a] Root / Leader process copies data to its shared memory
- [b] Non-leader processes read data from shared memory
- [c] Multi-endpoints forward data to leader processes of respective child nodes

Design 3: Tuned HYbrid Multi-endpoint

Turbing Pisign 1 and Design 2

- Scalable for various system and problem sizes
- Select algorithm based on empirical evaluations.

Experimental Setup

Cluster	Processor	Memory	Interconnect
Skylake + Omni-Path	2.1 GHz 24-core Intel Xeon Platinum 8160 per socket, 2 sockets, 2 hardware threads/core.	192GB DDR4 RAM	Omni-Path (100Gbps)
AMD EPYC + InfiniBand	2.4 GHz 32-core AMD EPYC 7551 per socket, 2 sockets, 1 threads/core	512GB DDR3 RAM	IB-EDR (100G)
OpenPOWER + InfiniBand (No Hyperthreading)	3.4 GHz 24-SMT4 cores Power-9 CPUs per socket, 2 sockets, 8 NUMA, 4 threads per core	512GB DDR3 RAM, 96GB HBM2	IB-EDR (100G) dual-rail
Cascade Lake + InfiniBand	2.7 GHz 28-core Intel Xeon 8280 per socket, 2 sockets, 2 hardware threads/core.	192GB DDR4 RAM	IB-HDR (100Gbps)

Evaluations with

- MVPAPICH2X-2.3rc2, Intel MPI 2018.0.2, Spectrum MPI v10.2.0.11rtm2
- OSU Microbenchmarks and SPECMPI applications: MILC, SOCCORO, WRF2, ZeusMP2

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002 (Supercomputing '02)
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Availat
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since
 - Used by more than 3,050 organizations in 89 countries
 - More than 615,000 (> 0.6 million) downloads from the C 2001-2019
 - Empowering many TOP500 clusters (Nov '19 ranking)
 - 3rd, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China
 - 5th, 448, 448 cores (Frontera) at TACC
 - 8th, 391,680 cores (ABCI) in Japan
 - 14th, 570,020 cores (Nurion) in South Korea and many others
 - Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)
 - http://mvapich.cse.ohio-stateneduner in the #5th TACC Frontera Syste
- Empowering Top500 systems for over a decade

Impact: Message Size

Observations:

- 1. Up to 54% less latency than tuned broadcast algorithms in MVAPICH2-X
- 2. Up to 104% less latency than tuned broadcast algorithms in Intel MPI
- 3. Up to 44% less latency than tuned broadcast algorithms in Spectrum

Impact: Problem Size

Skylake + InfiniB and

POWER9 + InfiniB and

Observations:

- 1. Up to 43% less latency against MVAPICH2 over all problem sizes
- 2. Up to 73% less latency against Intel MPI algorithms over all problem sizes

Impact: Applications -Spec MPI

Skylake + Omni-P ath

Observations:

Up to 37% lesser latency over default MVAPICH2 broadcast algorithms

Conclusions

- Traditional designs for broadcast communication do not effectively utilize the high degree of parallelism and increased message rate capabilities offered by modern architecture
- Proposed Multi-endpoints design that leverage multiple process endpoints to effectively use available bandwidth and deliver good performance benefits
- Validated designs at popular Hardware configurations and against state-of-art MPI libraries which validate the strength of the proposed designs.

Thank You!

ruhela.2@cse.ohio-state.edu

Network Based Computing

Network-Based Computing Laboratory Follow us on http://nowlab.cse.ohio-state.edu/https://twitter.com/mvapich

The High-Performance MPI/PGAS
Project
http://mvapich.cse.ohio-state.edu/

High-Performance Big Data

The High-Performance Big Data Project http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project http://hidl.cse.ohio-state.edu/