Performance Engineering using MVAPICH and TAU

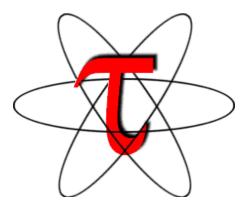
Sameer Shende, Srinivasan Ramesh, Allen D. Malony, Wyatt Spear, Kevin Huck University of Oregon

> SC19 OSU Booth Tuesday, November 19, 2019, 4pm – 4:30pm

Outline

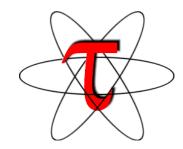
• Introduction

- The MPI Tools Interfaces and Benefits
- Integrating TAU and MVAPICH2 with MPI_T



Acknowledgments

- The MVAPICH2 team The Ohio State University
 - http://mvapich.cse.ohio-state.edu
- TAU team at the University of Oregon
 - http://tau.uoregon.edu



TAU Performance System[®]

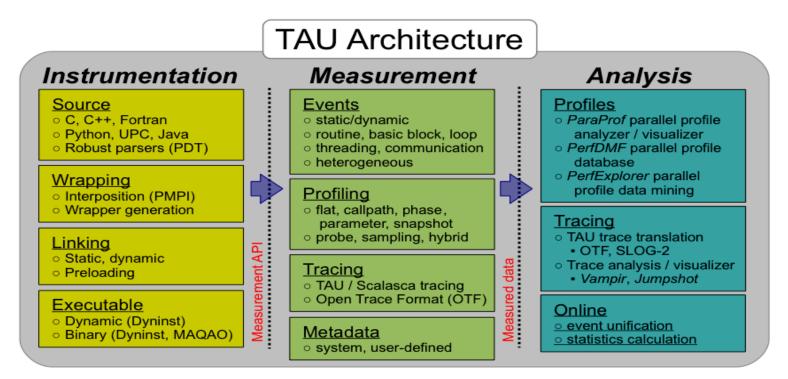
- Tuning and Analysis Utilities (25+ year project)
- Comprehensive performance profiling and tracing
 - Integrated, scalable, flexible, portable
 - Targets all parallel programming/execution paradigms

Integrated performance toolkit

- Instrumentation, measurement, analysis, visualization
- Widely-ported performance profiling / tracing system
- Performance data management and data mining
- Open source (BSD-style license)
- Uses performance and control variables to interface with MVAPICH2
- Integrates with application frameworks
- http://tau.uoregon.edu

Understanding Application Performance using TAU

- **How much time** is spent in each application routine and outer *loops*? Within loops, what is the contribution of each *statement*?
- **How many instructions** are executed in these code regions? Floating point, Level 1 and 2 *data cache misses*, hits, branches taken?
- What is the memory usage of the code? When and where is memory allocated/deallocated? Are there any memory leaks?
- What are the I/O characteristics of the code? What is the peak read and write *bandwidth* of individual calls, total volume?
- What is the contribution of each *phase* of the program? What is the time wasted/spent waiting for collectives, and I/O operations in Initialization, Computation, I/O phases?
- How does the application *scale*? What is the efficiency, runtime breakdown of performance across different core counts?
- How can I tune MPI for better performance? What performance and control does MVAPICH2 export to observe and control its performance?



TAU Performance System[®]

Parallel performance framework and toolkit

- Supports all HPC platforms, compilers, runtime system
- Provides portable instrumentation, measurement, analysis

TAU Instrumentation Approach

Supports both direct and indirect performance observation

- Direct instrumentation of program (system) code (probes)
- Instrumentation invokes performance measurement
- Event measurement: performance data, meta-data, context
- Indirect mode supports sampling based on periodic timer or hardware performance counter overflow based interrupts

Support for user-defined events

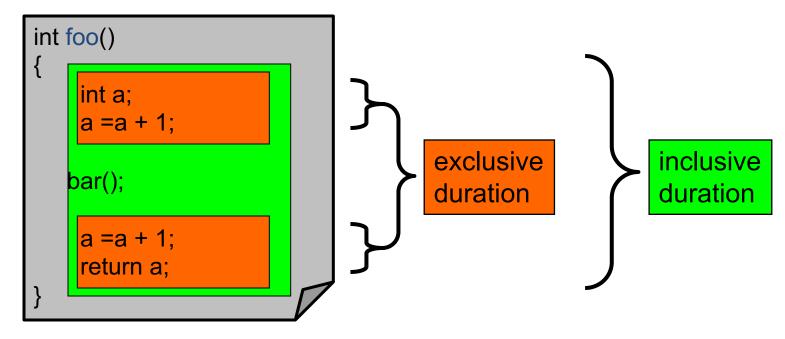
- *Interval* (Start/Stop) events to measure exclusive & inclusive duration
- *Atomic events* (Trigger at a single point with data, e.g., heap memory)
 - Measures total, samples, min/max/mean/std. deviation statistics
- **Context events** (are atomic events with executing context)
 - Measures above statistics for a given calling path

Direct Observation: Events

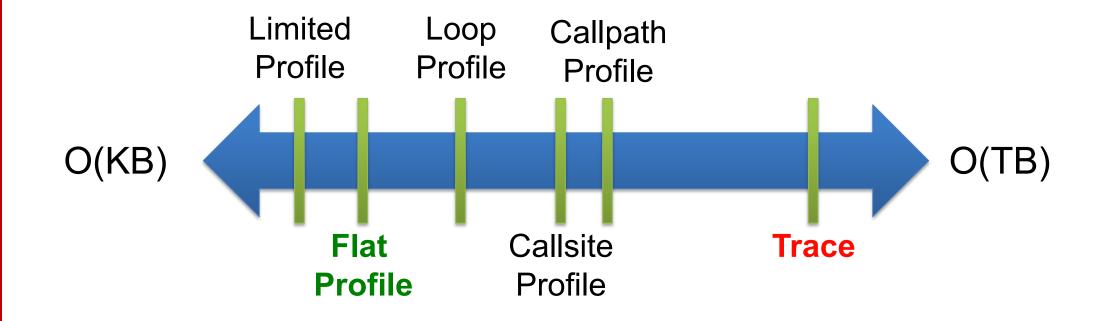
Event types

- Interval events (begin/end events)
 - Measures exclusive & inclusive durations between events
 - Metrics monotonically increase
- Atomic events (trigger with data value)
 - Used to capture performance data state
 - Shows extent of variation of triggered values (min/max/mean)

Code events


- Routines, classes, templates
- Statement-level blocks, loops

Inclusive and Exclusive Profiles


- Performance with respect to code regions
- Exclusive measurements for region only
- Inclusive measurements includes child regions

How much data do you want?

Types of Performance Profiles

Flat profiles

- Metric (e.g., time) spent in an event
- Exclusive/inclusive, # of calls, child calls, ...

Callpath profiles

- Time spent along a calling path (edges in callgraph)
- "main=> f1 => f2 => MPI_Send"
- Set the TAU_CALLPATH and TAU_CALLPATH_DEPTH environment variables

Callsite profiles

- Time spent along in an event at a given source location
- Set the TAU_CALLSITE environment variable

Phase profiles

- Flat profiles under a phase (nested phases allowed)
- Default "main" phase
- Supports static or dynamic (e.g. per-iteration) phases

Instrumentation

Add hooks in the code to perform measurements

Source instrumentation using a preprocessor

- Add timer start/stop calls in a copy of the source code.
- Use Program Database Toolkit (PDT) for parsing source code.
- Requires recompiling the code using TAU shell scripts (tau_cc.sh, tau_f90.sh)
- Selective instrumentation (filter file) can reduce runtime overhead and narrow instrumentation focus.

Compiler-based instrumentation

- Use system compiler to add a special flag to insert hooks at routine entry/exit.
- Requires recompiling using TAU compiler scripts (tau_cc.sh, tau_f90.sh...)

Runtime preloading of TAU's Dynamic Shared Object (DSO)

- No need to recompile code! Use **mpirun tau_exec ./app** with options.
- Requires dynamic executable (link using –**dynamic** on Cray systems).

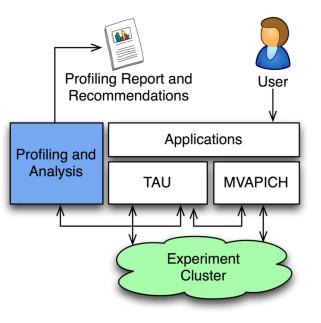
Outline

• Introduction

- The MPI Tools Interfaces and Benefits
- Integrating TAU and MVAPICH2 with MPI_T

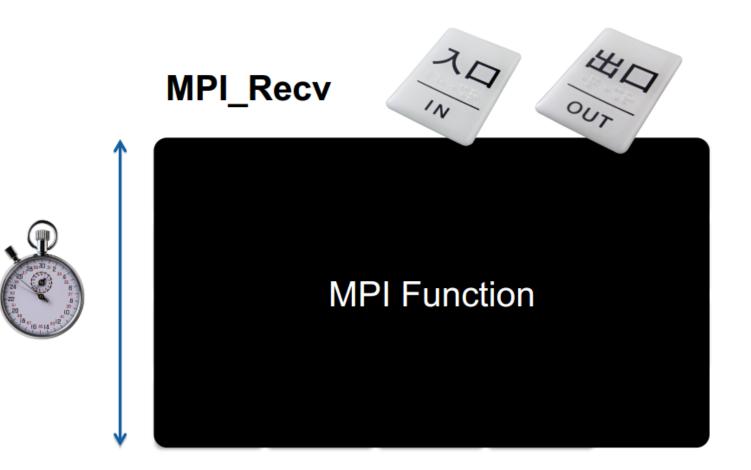
Overview of the MVAPICH2 Project High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

- MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002 •
- MVAPICH2-X (MPI + PGAS), Available since 2011 •
- Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014 •
- Support for Virtualization (MVAPICH2-Virt), Available since 2015 ۲
- Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
- Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015 •
- Used by more than 3,025 organizations in 89 countries
- More than 562,000 (> 0.5 million) downloads from the OSU site directly
- Empowering many TOP500 clusters (Nov '18 ranking) ۲
 - 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China ٠
 - 5th, 448,448 cores (Frontera) at TACC ٠
 - 8th, 391,680 cores (ABCI) in Japan ٠
 - 15th, 570,020 cores (Neurion) in S. Korea and many others •
- Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)
- http://mvapich.cse.ohio-state.edu


Empowering Top500 systems for over a decade ΓΗΕ ΟΗΙΟ ΣΤΑΤΕ UNIVERSITY

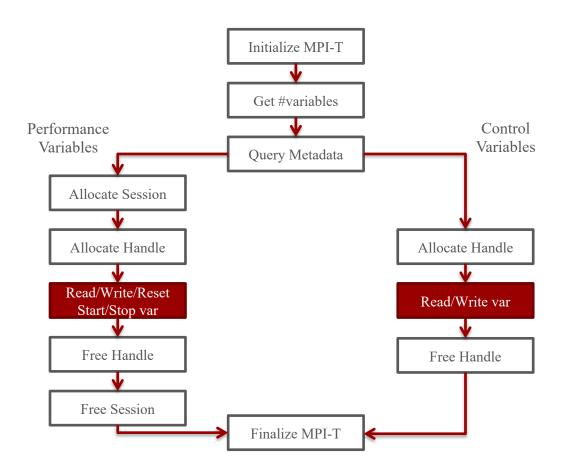
Partner in TACC Frontera System

MVAPICH2 and **TAU**



- TAU and MVAPICH2 are enhanced with the ability to generate recommendations and engineering performance report
- MPI libraries like MVAPICH2 are now "reconfigurable" at runtime
- TAU and MVAPICH2 communicate using the MPI-T interface

Why PMPI is not good enough?



• Takes a "black box" view of the MPI library

MPI_T usage semantics

inint MPI pTarcyart (pet_infodintestar sindex, what *name int *name_len, int *verbosity, int MPI_T_pyar, handle, alloc (MPI_T, pyar session session, int pyar, index, int MPI_T_pvar_reset(MPDID_pyablestar) (PET_T) pyar session session, int pyar, index, int MPI_T_pvar_reset(MPDID_pyablestar) (PET_T) pyar session session, int pyar, index, Char desc, int *count);

MPI_T support with MVAPICH2

- Support performance variables (PVAR)
 - Variables to track different components within the MPI library
- Initial support for Control Variables (CVAR)
 - Variables to modify the behavior of MPI Library

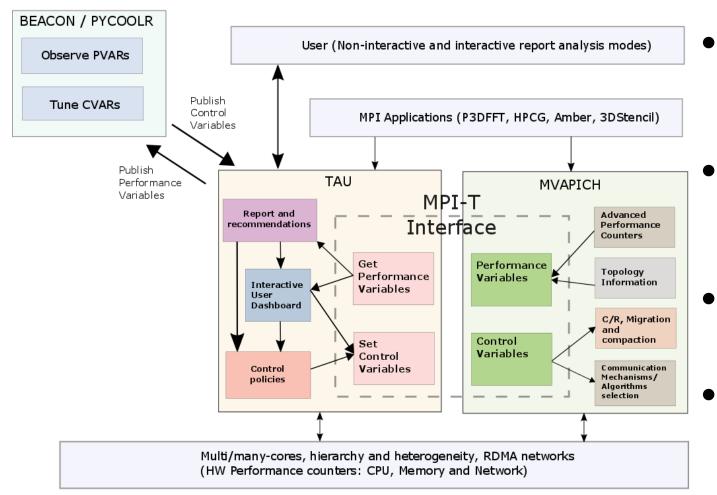
Memory Usage: - current level - maximum watermark	InfiniBand N/W: - #control packets - #out-of-order packets	Pt-to-pt messages: - unexpected queue length - unexp. match attempts - recvq. length
Registration cache: - hits - misses	Shared-memory: - limic/ CMA - buffer pool size & usage	Collective ops: - comm. creation - #algorithm invocations [Bcast – 8; Gather – 10]

Co-designing Applications to use MPI-T

Example Pseudo-code: Optimizing the eager limit dynamically:

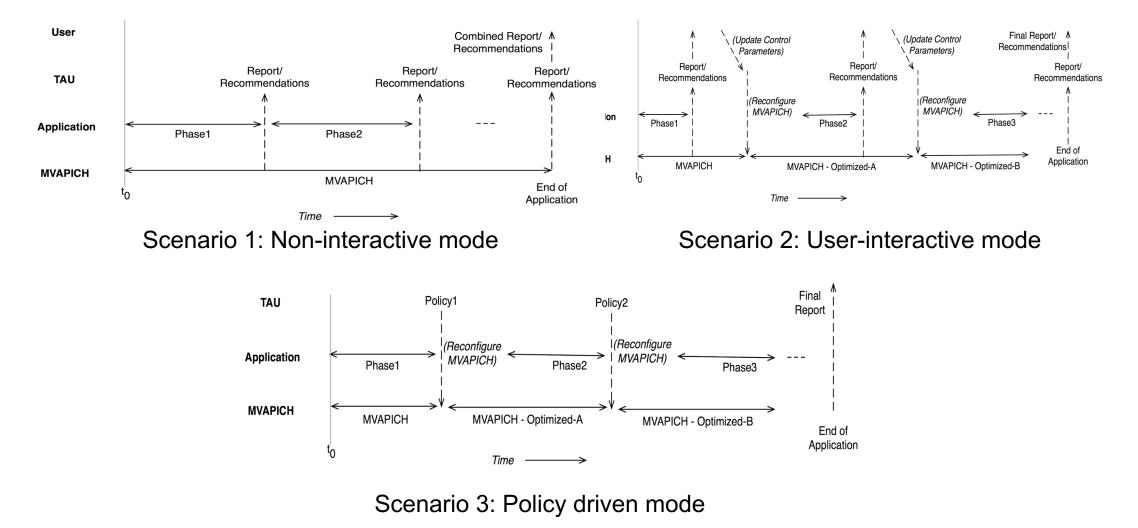
```
MPI_T_init_thread(..)
MPI_T_cvar_get_info(MV2_EAGER_THRESHOLD)
if (msg_size < MV2_EAGER_THRESHOLD + 1KB)
    MPI_T_cvar_write(MV2_EAGER_THRESHOLD, +1024)
MPI_Send(..)
MPI_Send(..)</pre>
```


Outline

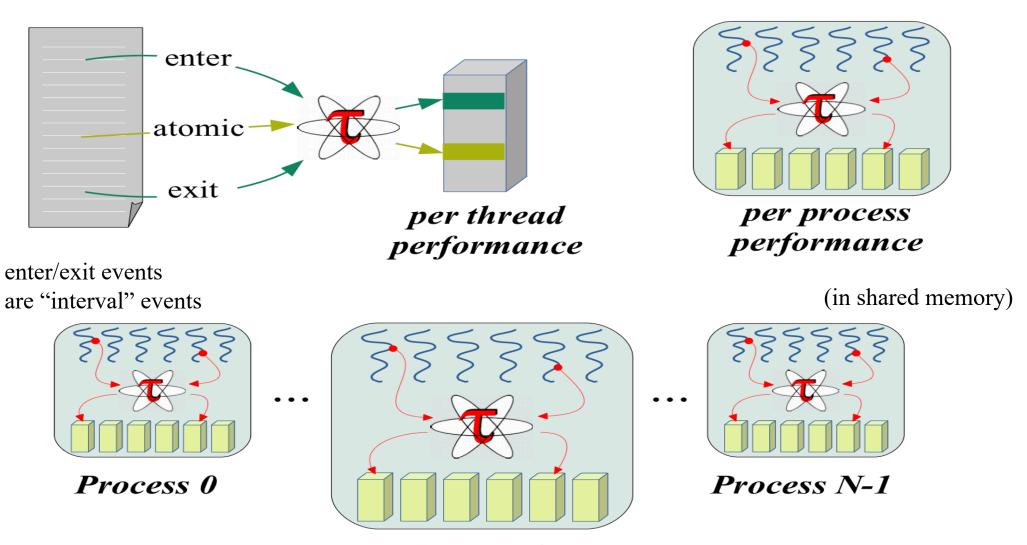

• Introduction

- The MPI Tools Interfaces and Benefits
- Integrating TAU and MVAPICH2 with MPI_T

Integrating TAU with MVAPICH2 through MPI_T Interface



- Enhance existing support for MPI_T in MVAPICH2 to expose a richer set of performance and control variables
- Get and display MPI Performance Variables (PVARs) made available by the runtime in TAU
- Control the runtime's behavior via MPI Control Variables (CVARs)
- Add support to MVAPICH2 and TAU for interactive performance engineering sessions



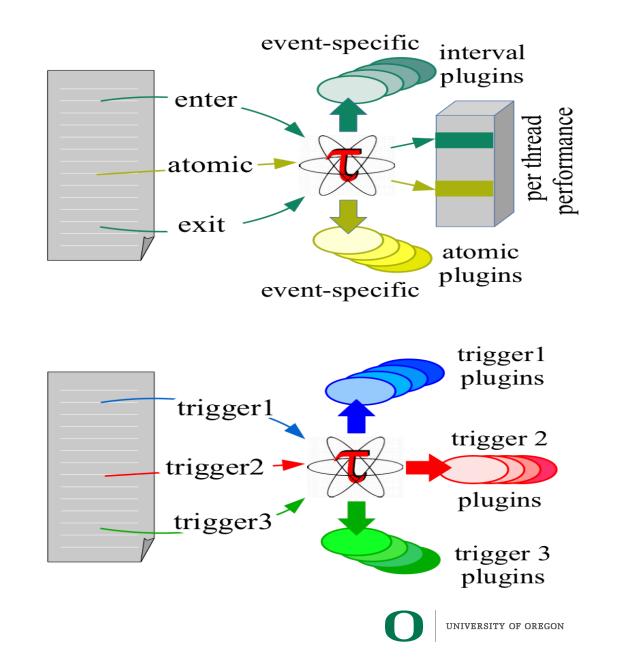
Three Scenarios for Integration

TAU Performance Measurement Model

application-wide performance data

Process i

UNIVERSITY OF OREGON


TAU Plugin Architecture

Extend TAU event interface for plugins

- Events: *interval, atomic*
- Specialized on event ID
- Synchronous operation

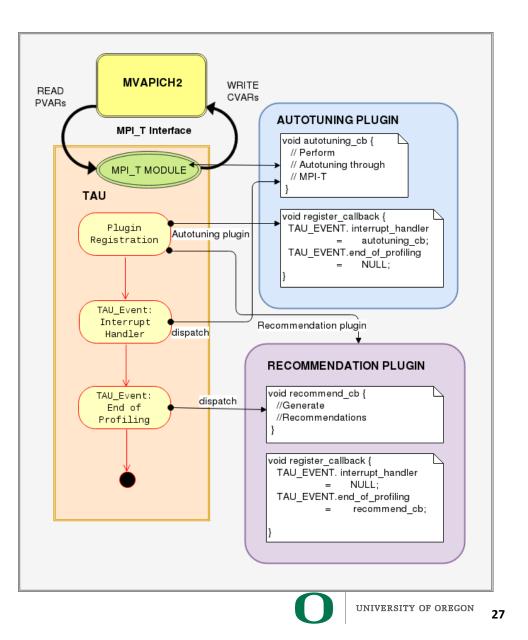
Create TAU interface for *trigger* **plugins**

- Named trigger
- Pass application data
- Synchronous
- Asynchronous using agent plugin

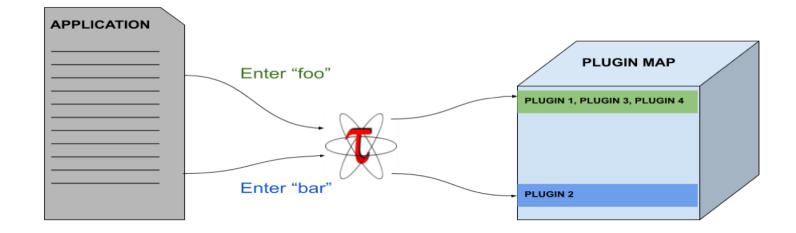
TAU Plugin Architecture

- Both event and trigger plugins are synchronous
 - Directly called from the application
 - Execute inline with the application
 - Use an application's thread of execution
- Consider utilizing a separate thread of execution to perform performance analysis functions
 - For instance, periodic daemon to sample performace
- Design an agent plugin mechanism
 - Create an execution thread to execute plugin
 - Register plugin with this execution thread

TAU Plugin Architecture


- Parallel performance systems do not typically do runtime analytics when making measurements
- Want to extend a performance system with additional analytics functionality WITHOUT building it directly into the performance system
- Apply a plugin architecture approach
 - Develop analytics plugins (common, application)
 - Register (load) them with the performance system
- Plugins have access to performance data state
- Plugins can utilize the parallel execution context

Plugin-based Infrastructure for Non-Interactive Tuning


- TAU supports a *fully-customizable* plugin infrastructure based on callback event handler registration for salient states inside TAU:
 - Function Registration / Entry / Exit
 - Phase Entry / Exit
 - Atomic Event Registration / Trigger
 - Init / Finalize Profiling
 - Interrupt Handler
 - MPI_T
- Application can define its own "trigger" states and associated plugins
 - Pass arbitrary data to trigger state plugins

TAU Customization

- TAU states can be *named* or *generic*
- TAU distinguishes named states in a way that allows for separation of \bullet occurrence of a state from the action associated with it
 - Function entry for "foo" and "bar" represent distinguishable states in TAU
- TAU maintains an internal map of a list of plugins associated with each state \bullet

TAU Runtime Control of Plugin

- TAU defines a plugin API to deliver access control to the internal plugin map
- User can specify a regular expression to control plugins executed for a class of named states at runtime
 - Access to map on a process is serialized: application is expected to access map through main thread

TAU Phase Based Recommendations

- MiniAMR: Benefits from hardware offloading using SHArP hardware offload protocol supported by MVAPICH2 for MPI_Allreduce operation
- Recommendation Plugin:
 - Registers callback for *"Phase Exit"* event
 - Monitors message size through PMPI interface
 - If message size is low and execution time inside MPI_Allreduce is significant, a recommendation is generated on ParaProf (TAU's GUI) for the user to set the CVAR enabling SHArP

TAU Per-Phase Recommendations in ParaProf

😣 🖻 💷 Metadata for n,c,t 7,0,0	
Name	Value
TAU MEMDBG PROTECT BELOW	off
TAU MEMDBG PROTECT FREE	off
TAU MPI T ENABLE USER TUNING POLICY	off
TAU OPENMP RUNTIME	on
TAU OPENMP RUNTIME EVENTS	on
TAU OPENMP RUNTIME STATES	off
TAU OUTPUT CUDA CSV	off
TAU PAPI MULTIPLEXING	off
TAU PROFILE	on
TAU PROFILE FORMAT	profile
TAU RECOMMENDATION PHASE ALLOCATE	MPI T RECOMMEND SHARP USAGE: No perfomance benefit foreseen with SHArP usage
TAU RECOMMENDATION PHASE DEALLOCATE	MPI T RECOMMEND SHARP USAGE: You could see potential improvement in performance by enabling MV2 ENABLE SHARP in MVAPICH version 2.3a and above
TAU RECOMMENDATION PHASE DRIVER	MPI T RECOMMEND SHARP USAGE: You could see potential improvement in performance by enabling MV2 ENABLE SHARP in MVAPICH version 2.3a and above
TAU RECOMMENDATION PHASE INIT	MPI T RECOMMEND SHARP USAGE: No perfomance benefit foreseen with SHArP usage
TAU RECOMMENDATION PHASE PROFILE	MPI T RECOMMEND SHARP USAGE: You could see potential improvement in performance by enabling MV2 ENABLE SHARP in MVAPICH version 2.3a and above
TAU REGION ADDRESSES	off
TAU SAMPLING	off
TAU SHOW MEMORY FUNCTIONS	off
TAU SIGNALS GDB	off
TAU THROTTLE	on
TAU THROTTLE NUMCALLS	100000
TAU THROTTLE PERCALL	10
TAU TRACE	off
TAU TRACE FORMAT	tau
TAU TRACK CUDA CDP	off
TAU TRACK CUDA ENV	off
TAU TRACK CUDA INSTRUCTIONS	
TAU TRACK CUDA SASS	off
TAU TRACK HEADROOM	off
TAU TRACK HEAP	off
TAU TRACK IO PARAMS	off
TAU TRACK MEMORY FOOTPRINT	off

Enhancing MPI_T Support

- Introduced support for new MPI_T based CVARs to MVAPICH2
 - MPIR_CVAR_MAX_INLINE_MSG_SZ
 - Controls the message size up to which "inline" transmission of data is supported by MVAPICH2
 - MPIR_CVAR_VBUF_POOL_SIZE
 - Controls the number of internal communication buffers (VBUFs)
 MVAPICH2 allocates initially. Also,
 MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1] ([2...n])
 - MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE
 - Controls the number of VBUFs MVAPICH2 allocates when there are no more free VBUFs available
 - MPIR_CVAR_IBA_EAGER_THRESHOLD
 - Controls the message size where MVAPICH2 switches from eager to rendezvous protocol for large messages
- TAU enhanced with support for setting MPI_T CVARs in a non-interactive mode for uninstrumented applications

32

MVAPICH2

- Several new MPI_T based PVARs added to MVAPICH2
 - o mv2_vbuf_max_use, mv2_total_vbuf_memory etc
- Enhanced TAU with support for tracking of MPI_T PVARs and CVARs for uninstrumented applications
 - ParaProf, TAU's visualization front end, enhanced with support for displaying PVARs and CVARs
 - TAU provides tau_exec, a tool to transparently instrument MPI routines
 - Uninstrumented:
 - % mpirun –np 1024 ./a.out
 - Instrumented:
 - % export TAU_TRACK_MPI_T_PVARS=1
 - % export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE
 - % export TAU_MPI_T_CVAR_VALUES=16
 - % mpirun -np 1024 tau_exec -T mvapich2,mpit ./a.out

PVARs Exposed by MVAPICH2

		X TAU: ParaProf Manager
File Options Help		
Applications	TrialField	Value
	MPI_T PVAR[0]: mem_allocated	Current level of allocated memory within the MPI library
🕈 🗂 Default App	MPI_T PVAR[10]: mv2_num_2level_comm_success	Number of successful 2-level comm creations
	MPI_T PVAR[11]: mv2_num_shmem_coll_calls	Number of times MV2 shared-memory collective calls were invoked
🕂 🥥 lulesh.ppk	MPI_T PVAR[12]: mpit_progress_poll	CH3 RDMA progress engine polling count
- • TIME	MPI_T PVAR[13]: mv2_smp_read_progress_poll	CH3 SMP read progress engine polling count
🗖 Default (jdbc:h2:/home	MPI_T PVAR[14]: mv2_smp_write_progress_poll	CH3 SMP write progress engine polling count
		Unsucessful CH3 SMP read progress engine polling count
		Unsucessful CH3 SMP write progress engine polling count
	MPI_T PVAR[17]: rdma_ud_retransmissions	CH3 RDMA UD retransmission count
	MPI_T PVAR[18]: mv2_coll_bcast_binomial	Number of times MV2 binomial bcast algorithm was invoked
	MPI_T PVAR[19]: mv2_coll_bcast_scatter_doubling_all	Number of times MV2 scatter+double allgather bcast algorithm was invoked
	MPI_T PVAR[1]: mem_allocated	Maximum level of memory ever allocated within the MPI library
		Number of times MV2 scatter+ring allgather bcast algorithm was invoked
	MPI_T PVAR[21]: mv2_coll_bcast_scatter_ring_allgath	Number of times MV2 scatter+ring allgather shm bcast algorithm was invoked
	MPI_T PVAR[22]: mv2_coll_bcast_shmem	Number of times MV2 shmem bcast algorithm was invoked
	MPI_T PVAR[23]: mv2_coll_bcast_knomial_internode	Number of times MV2 knomial internode bcast algorithm was invoked
	MPI_T PVAR[24]: mv2_coll_bcast_knomial_intranode	Number of times MV2 knomial intranode bcast algorithm was invoked
	MPI_T PVAR[25]: mv2_coll_bcast_mcast_internode	Number of times MV2 mcast internode bcast algorithm was invoked
	MPI_T PVAR[26]: mv2_coll_bcast_pipelined	Number of times MV2 pipelined bcast algorithm was invoked
	MPI_T_PVAR[27]: mv2_coll_alltoall_inplace	Number of times MV2 in-place alltoall algorithm was invoked
	MPI_T PVAR[28]: mv2_coll_alltoall_bruck	Number of times MV2 brucks alltoall algorithm was invoked
	MPI_T PVAR[29]: mv2_coll_alltoall_rd	Number of times MV2 recursive-doubling alltoall algorithm was invoked
	MPI_T_PVAR[2]: num_malloc_calls	Number of MPIT malloc calls
	MPI_T PVAR[30]: mv2_coll_alltoall_sd	Number of times MV2 scatter-destination alltoall algorithm was invoked
	MPI_T PVAR[31]: mv2_coll_alltoall_pw	Number of times MV2 pairwise alltoall algorithm was invoked
	MPI_T PVAR[32]: mpit_alltoallv_mv2_pw	Number of times MV2 pairwise alltoally algorithm was invoked
	MPI_T PVAR[33]: mv2_coll_allreduce_shm_rd	Number of times MV2 shm rd allreduce algorithm was invoked
	MPI T PVAR[34]: mv2 coll allreduce shm rs	Number of times MV2 shm rs allreduce algorithm was invoked
	MPI_T PVAR[35]: mv2_coll_allreduce_shm_intra	Number of times MV2 shm intra allreduce algorithm was invoked
	MPI_T PVAR[36]: mv2_coll_allreduce_intra_p2p	Number of times MV2 intra p2p allreduce algorithm was invoked
	MPI_T PVAR[37]: mv2_coll_allreduce_2lvl	Number of times MV2 two-level allreduce algorithm was invoked
	MPI_T PVAR[38]: mv2_coll_allreduce_shmem	Number of times MV2 shmem allreduce algorithm was invoked
	MPI T PVAR[39]: mv2 coll allreduce mcast	Number of times MV2 multicast-based allreduce algorithm was invoked
	MPI_T PVAR[3]: num_calloc_calls	Number of MPIT_calloc calls
	MPI_T PVAR[40]: mv2_reg_cache_hits	Number of registration cache hits
	MPI_T PVAR[41]: mv2_reg_cache_misses	Number of registration cache misses
	MPI_T PVAR[42]: mv2_vbuf_allocated	Number of VBUFs allocated
	MPI T PVAR[43]: mv2 vbuf allocated array	Number of VBUFs allocated
	MPI_T PVAR[44]: mv2_vbuf_freed	Number of VBUFs freed
	MPI_T PVAR[45]: mv2_ud_vbuf_allocated	Number of UD VBUFs allocated
	MPI_T PVAR[46]: mv2_ud_vbuf_freed	Number of UD VBUFs freed
	MPI_T PVAR[45]: mv2_vbuf_free_attempts	Number of time we attempted to free VBUFs
	MPL T DVAR[47]. mv2_vbuf_free_attempts	Average time for number of times we successfully freed VBUFs
		Average time for number of times we sucessfully freed VBUFs
	MPI_T PVAR[4]: num_memalign_calls	Number of MPIT_memalign calls
	MPI_T PVAR[50]: mv2_vbuf_allocate_time	Average time for number of times we allocated VBUFs
	MPI_T PVAR[51]: mv2_vbuf_allocate_time	Average time for number of times we allocated VBUFs

CVARs Exposed by MVAPICH2

Applications	TrialField	Value
Standard Applications	Local Time	2016-08-16T10:11:04-07:00
🕂 🗂 Default App	MPI Processor Name	cerberus.nic.uoregon.edu
🕂 🗂 Default Exp	MPIR CVAR ABORT ON LEAKED HANDLES	If true, MPI will call MPI_Abort at MPI_Finalize if any MPI object handles have been leaked. For example
- ulesh.ppk	MPIR CVAR ALLGATHERV PIPELINE MSG SIZE	The smallest message size that will be used for the pipelined, large-message, ring algorithm in the MPI
- • TIME	MPIR CVAR ALLGATHER LONG MSG SIZE	For MPI Allgather and MPI Allgatherv, the long message algorithm will be used if the send buffer size is
Default (jdbc:h2:/home	MPIR_CVAR_ALLGATHER_SHORT_MSG_SIZE	For MPI_Allgather and MPI_Allgatherv, the short message algorithm will be used if the send buffer size is
	MPIR_CVAR_ALLREDUCE_SHORT_MSG_SIZE	the short message algorithm will be used if the send buffer size is $\langle =$ this value (in bytes)
	MPIR_CVAR_ALLTOALL_MEDIUM_MSG_SIZE	the medium message algorithm will be used if the per-destination message size (sendcount*size(sendty)
	MPIR CVAR ALLTOALL SHORT MSG SIZE	the short message algorithm will be used if the per-destination message size (sendcount*size(sendtype))
	MPIR CVAR ALLTOALL THROTTLE	max no. of irecvs/isends posted at a time in some alltoall algorithms. Setting it to 0 causes all irecvs/isen
	MPIR_CVAR_ASYNC_PROGRESS	If set to true, MPICH will initiate an additional thread to make asynchronous progress on all communicat
	MPIR CVAR BCAST LONG MSG SIZE	Let's define short messages as messages with size < MPIR CVAR BCAST SHORT MSG SIZE, and mediu.
	MPIR CVAR BCAST MIN PROCS	Let's define short messages as messages with size < MPIR CVAR BCAST SHORT MSG SIZE, and mediu
	MPIR CVAR BCAST SHORT MSG SIZE	Let's define short messages as messages with size < MPIR_CVAR_BCAST_SHORT_MSG_SIZE, and mediu
	MPIR CVAR CH3 EAGER MAX MSG SIZE	This cvar controls the message size at which CH3 switches from eager to rendezvous mode.
	MPIR CVAR CH3 ENABLE HCOLL	If true, enable HCOLL collectives.
	MPIR CVAR CH3 INTERFACE HOSTNAME	If non-NULL, this cvar specifies the IP address that other processes should use when connecting to this p
	MPIR_CVAR_CH3_NOLOCAL	If true, force all processes to operate as though all processes are located on another node. For example
	MPIR_CVAR_CH3_ODD_EVEN_CLIQUES	If true, odd procs on a node are seen as local to each other, and even procs on a node are seen as local
	MPIR_CVAR_CH3_PORT_RANGE	The MPIR_CVAR_CH3_PORT_RANGE environment variable allows you to specify the range of TCP ports
	MPIR_CVAR_CH3_RMA_ACC_IMMED	Use the immediate accumulate optimization
	MPIR CVAR CH3 RMA GC NUM COMPLETED	Threshold for the number of completed requests the runtime finds before it stops trying to find more co
	MPIR CVAR CH3 RMA GC NUM TESTED	Threshold for the number of RMA requests the runtime tests before it stops trying to check more reque
	MPIR CVAR CH3 RMA LOCK IMMED	Issue a request for the passive target RMA lock immediately. Default behavior is to defer the lock requ
	MPIR_CVAR_CH3_RMA_MERGE_LOCK_OP_UNLOCK	Enable/disable an optimization that merges lock, op, and unlock messages, for single-operation passive t
		Threshold for the number of new requests since the last attempt to complete pending requests. Higher
	MPIR CVAR CH3 RMA NREQUEST THRESHOLD	Threshold at which the RMA implementation attempts to complete requests while completing RMA oper
	MPIR CVAR CHOP ERROR STACK	If >0, truncate error stack output lines this many characters wide. If 0, do not truncate, and if <0 use a
	MPIR CVAR COLL ALIAS CHECK	Enable checking of aliasing in collective operations
	MPIR_CVAR_COMM_SPLIT_USE_QSORT	Use qsort(3) in the implementation of MPI_Comm_split instead of bubble sort.
	MPIR_CVAR_CTXID_EAGER_SIZE	The MPIR_CVAR_CTXID_EAGER_SIZE environment variable allows you to specify how many words in the
	MPIR_CVAR_DEBUG_HOLD	If true, causes processes to wait in MPI_Init and MPI_Initthread for a debugger to be attached. Once the
	MPIR_CVAR_DEFAULT_THREAD_LEVEL	Sets the default thread level to use when using MPI_INIT.
	MPIR_CVAR_DUMP_PROVIDERS	If true, dump provider information at init
	MPIR_CVAR_ENABLE_COLL_FT_RET	DEPRECATED! Will be removed in MPICH-3.2 Collectives called on a communicator with a failed proces
	MPIR_CVAR_ENABLE_SMP_ALLREDUCE	Enable SMP aware allreduce.
	MPIR_CVAR_ENABLE_SMP_BARRIER	Enable SMP aware barrier.
	MPIR_CVAR_ENABLE_SMP_BCAST	Enable SMP aware broadcast (See also: MPIR_CVAR_MAX_SMP_BCAST_MSG_SIZE)
	MPIR_CVAR_ENABLE_SMP_COLLECTIVES	Enable SMP aware collective communication.
	MPIR_CVAR_ENABLE_SMP_REDUCE	Enable SMP aware reduce.
	MPIR_CVAR_ERROR_CHECKING	If true, perform checks for errors, typically to verify valid inputs to MPI routines. Only effective when N
	MPIR_CVAR_GATHERV_INTER_SSEND_MIN_PROCS	Use Ssend (synchronous send) for intercommunicator MPI_Gatherv if the "group B" size is >= this value
	MPIR_CVAR_GATHER_INTER_SHORT_MSG_SIZE	use the short message algorithm for intercommunicator MPI_Gather if the send buffer size is < this valu
	MPIR_CVAR_GATHER_VSMALL_MSG_SIZE	use a temporary buffer for intracommunicator MPI_Gather if the send buffer size is < this value (in byte
	MPIR_CVAR_IBA_EAGER_THRESHOLD	0 (old) -> 204800 (new), This set the switch point between eager and rendezvous protocol
	MPIR_CVAR_MAX_INLINE_SIZE	This set the maximum inline size for data transfer
	MPIR CVAR MAX SMP ALLREDUCE MSG SIZE	Maximum message size for which SMP-aware allreduce is used. A value of '0' uses SMP-aware allreduce

Using MVAPICH2 and TAU with Multiple CVARs

 To set CVARs or read PVARs using TAU for an uninstrumented binary: % export TAU_TRACK_MPI_T_PVARS=1
 % export TAU_MPI_T_CVAR_METRICS= MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1], MPIR_CVAR_IBA_EAGER_THRESHOLD
 % export TAU_MPI_T_CVAR_VALUES=32,64000
 % export PATH=/path/to/tau/x86_64/bin:\$PATH
 % mpirun -np 1024 tau_exec -T mvapich2,mpit ./a.out
 % paraprof

VBUF usage without CVARs

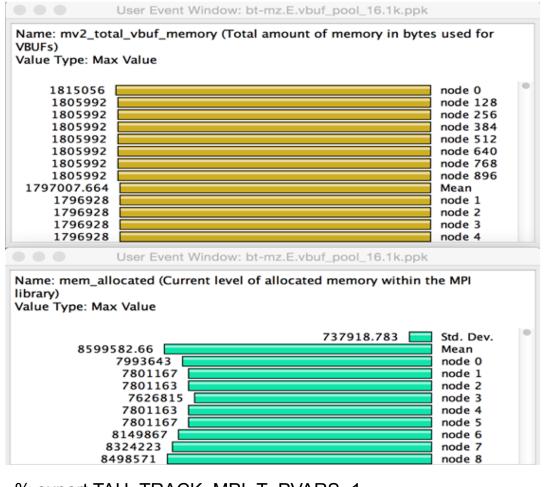
TAU: ParaProf: Context Events	for: node 0 - mpit_v	vithoutcvar_bt.C.	1k.ppk			
Name 🛆	MaxValue	MinValue	MeanValue	Std. Dev.	NumSamples	Total
mv2_total_vbuf_memory (Total amount of memory in bytes used for VBUFs)	3,313,056	3,313,056	3,313,056	() 1	3,313,056
mv2_ud_vbuf_allocated (Number of UD VBUFs allocated)	0	0	0	() 0	0
mv2_ud_vbuf_available (Number of UD VBUFs available)	0	0	0	() 0	0
mv2_ud_vbuf_freed (Number of UD VBUFs freed)	0	0	0	() 0	0
mv2_ud_vbuf_inuse (Number of UD VBUFs inuse)	0	0	0	() 0	0
mv2_ud_vbuf_max_use (Maximum number of UD VBUFs used)	0	0	0	() 0	0
mv2_vbuf_allocated (Number of VBUFs allocated)	320	320	320	() 1	320
mv2_vbuf_available (Number of VBUFs available)	255	255	255	() 1	255
mv2_vbuf_freed (Number of VBUFs freed)	25,545	25,545	25,545	() 1	25,545
mv2_vbuf_inuse (Number of VBUFs inuse)	65	65	65	() 1	65
mv2_vbuf_max_use (Maximum number of VBUFs used)	65	65	65	() 1	65
num_calloc_calls (Number of MPIT_calloc calls)	89	89	89	() 1	89
num_free_calls (Number of MPIT_free calls)	47,801	47,801	47,801	() 1	47,801
num_malloc_calls (Number of MPIT_malloc calls)	49,258	49,258	49,258	() 1	49,258
num_memalign_calls (Number of MPIT_memalign calls)	34	34	34	() 1	34
num_memalign_free_calls (Number of MPIT_memalign_free calls)	0	0	0	() 0	0

37

VBUF usage with CVARs

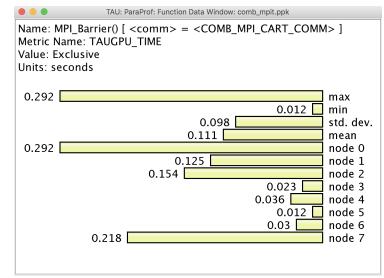
Name 🛆		MaxValue	MinValue	MeanValue	Std. Dev.	NumSamp	Total
mv2_total_vbuf_memory (Total amount of r	memory in bytes used for VBUFs)	1,815,056	1,815,056	1,815,056	0	1	1,815,056
mv2_ud_vbuf_allocated (Number of UD VB		0	0	0	0	0	0
mv2_ud_vbuf_available (Number of UD VB	UFs available)	0	0	0	0	0	0
mv2_ud_vbuf_freed (Number of UD VBUFs	freed)	0	0	0	0	0	0
mv2_ud_vbuf_inuse (Number of UD VBUFs	inuse)	0	0	0	0	0	0
mv2_ud_vbuf_max_use (Maximum number	of UD VBUFs used)	0	0	0	0	0	0
mv2_vbuf_allocated (Number of VBUFs allo	cated)	160	160	160	0	1	160
mv2_vbuf_available (Number of VBUFs ava	ilable)	94	94	94	0	1	94
mv2_vbuf_freed (Number of VBUFs freed)		5,479	5,479	5,479	0	1	5,479
mv2_vbuf_inuse (Number of VBUFs inuse)		66	66	66	0	1	66
mv2_vbuf_max_use (Maximum number of	VBUFs used)	66	66	66	0	1	66
num_calloc_calls (Number of MPIT_calloc ca	alls)	89	89	89	0	1	89
num_free_calls (Number of MPIT_free calls)	130	130	130	0	1	130
num_malloc_calls (Number of MPIT_malloc	calls)	1,625	1,625	1,625	0	1	1,625
num_memalign_calls (Number of MPIT_me	malign calls)	56	56	56	0	1	56
num_memalign_free_calls (Number of MPIT	_memalign_free calls)	0	0	0	0	0	0
	TA	U: ParaProf Manager					
Applications	TrialField		Value				
Standard Applications	MPI Processor Name		c526-502.stamp				
🔻 🚞 Default App	MPIR_CVAR_VBUF_POOL_SIZE		0 (old) -> 16 (ne	w), This set the siz	ze of the V	/BUF pool	
🔻 🚞 Default Exp	c						
v > bt-mz.E.vbuf_pool_16.1k.pp							

Total memory used by VBUFs is reduced from 3,313,056 to 1,815,056


VBUF Memory Usage Without CVAR

VBUF Memory Usage With CVAR

% export TAU_TRACK_MPI_T_PVARS=1 % export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE % export TAU_MPI_T_CVAR_VALUES=16 % mpirun -np 1024 *tau exec -T mvapich2* ./a.out



TAU: Extending Control Variables on a Per-Communicator Basis

- Based on named communicators (MPI_Comm_set_name) in an application,
 TAU allows a user to specify triples to set MPI_T cvars for each communicator:
 - Communicator name
 - MPI_T CVAR name
 - MPI_T CVAR value
 - %./configure -mpit -mpi -c++=mpicxx -cc=mpicc -fortran=mpif90 ...
 - % make install
 - % export TAU_MPI_T_COMM_METRIC_VALUES=<comm, cvar, value>,...
 - % mpirun –np 64 tau_exec –T mpit ./a.out
 - % paraprof

THE OHIO STATE UNIVERSITY

41

COMB LLNL App MPI_T Tuning for COMB_MPI_CART_COMM

bash-4.2\$

TAU_MPI_T_COMM_METRIC_VALUES=COMB_MPI_CART_COMM,MPIR_CVAR_GPUDIRECT_LIMIT,2097152,COMB_MPI_CART_COMM,MPIR_CVAR_USE_GPUDIRECT_RECEIVE_LIMIT,2097152, COMB_MPI_CART_COMM,MPIR_CVAR_CUDA_IPC_THRESHOLD,16384 MV2_USE_CUDA=1 mpirun -np 8 tau_exec -ebs -T mvapich2,mpit,cuda9,cupti,communicators,gnu -cupti ./comb -comm post_recv_wait_all_comm_post_send_wait_all_comm_wait_recv_wait_all_comm_wait_send_wait_all_200_200_cdivide 2_2_2 aperiodic 1_1_1 appost 1_1_1 avars 3_cvcles 100 -comm_cutoff

<pre>post_recv wait_all -comm post_send wait_a 250 -omp_threads 1</pre>	all -comm wait recv wait all -comm wait send wait all 200 200 200 -c	Jivide 2 2 - periodic 1 1 1 -ghost 1 1 1 -vars 3 -cvcles 100 -comm cutoff TAU: ParaProf: Function Data Window: comb_mpit.ppk
Started rank 0 of 8	Name: .TAU application Metric Name: TAUGPU_TIME	Name: .TAU application Metric Name: TAUGPU_TIME
Node lassen710	Value: Inclusive	Value: Inclusive
Compiler COMB_COMPILER	Units: seconds	Units: seconds
Cuda compiler COMB_CUDA_COMPILER		
GPU 0 visible undefined	7.39 max	6.855 max
Not built with openmp, ignoring -omp_threads 1.	7.241 min 0.048 std. dev.	6.559 min 0.096 [std. dev.
Cart coords 0 0 0	7.263 mean	6.6 mean
	7.39 node 0	6.855 node 0
Message policy cutoff 250	7.246 node 1	6.563 node 1
Post Recv using wait_all method	7.248 node 2 7.244 node 3	6.565 node 2 6.564 node 3
Post Send using wait_all method	7.244 node 3	6.564 node 4
Wait Recv using wait_all method	7.247 node 5	6.563 node 5
Wait Send using wait_all method	7.246 node 6	6.564 node 6
Num cycles 100	7.241 node 7	6.559 node 7
Num vars 3		
ghost_widths 1 1 1	Metadat	a for n,c,t 0,0,0
sizes 200 200 200	Name Value	
divisions 2 2 2	TAU_MPI_T_COMM_METRIC_VALUES COMB_MPI_CART_COMM,MPIR_C	VAR_GPUDIRECT_LIMIT,2097152,COMB_MPI_CART_COMM,MPIR_CVAR
P	Default	With MPI T CVARs
division map	Deladit	
map 0 0 0		ParaProf: Comparison Window
map 100 100 100		Metric: TAUGPU_TIME comb_default.ppk - Mean
map 200 200 200		Value: Inclusive comb_mpit.ppk - Mean
Starting test memcpy seq dst Host src Host		Units: seconds

Starting test Comm mock Mesh seq Host Buffers seq Host seq Host Starting test Comm mpi Mesh seq Host Buffers seq Host seq Host

.TAU application

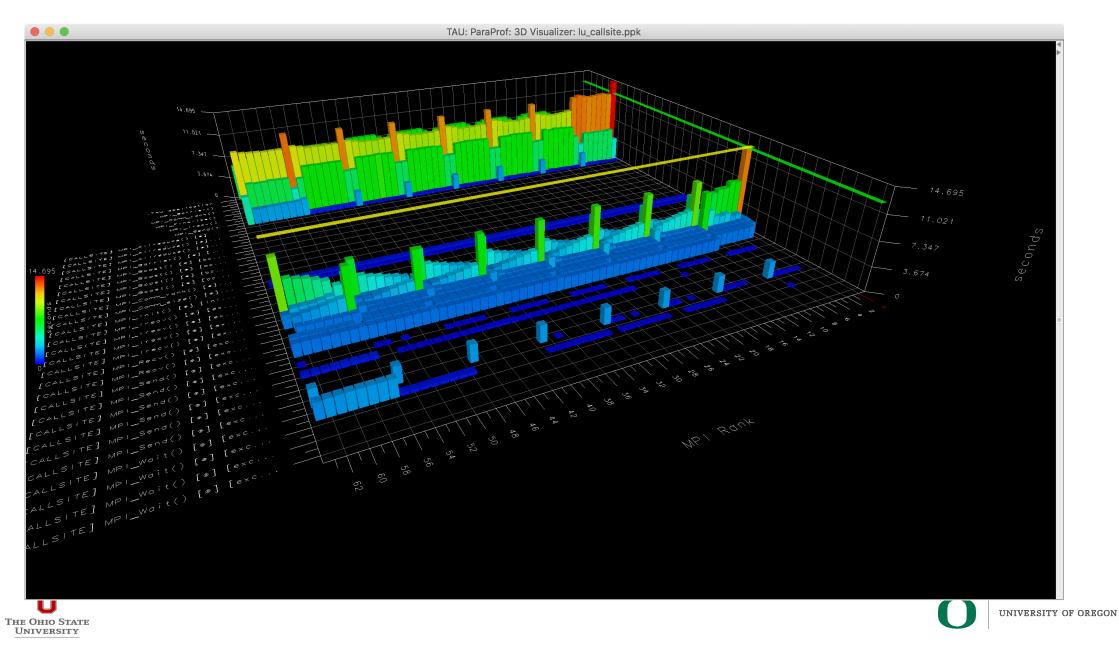
42

7.263

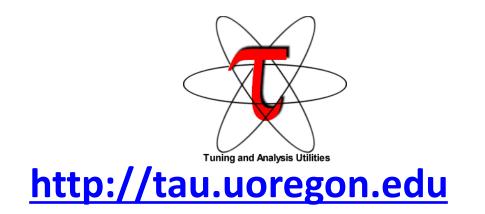
6.6 (90.863%)

COMB Profile

TAU: ParaProf: Statistics fo	r: node 0 - comb_mpit.ppk			
Name △	Exclusive TAUGP	Inclusive TAUGP	Calls	Child Calls
▼ □.TAU application	3.114	6.855	1	6,806
CONTEXT] .TAU application	0	3.09	103	0
[SAMPLE] COMB::detail::reset_1::operator()(int, int, int, int) const [{/usr/global/tog		0.57	19	0
[SAMPLE] COMB::detail::set_1::operator()(int, int, int) const [{/usr/global/tools		0.42	14	0
[SAMPLE] COMB::detail::set_copy::operator()(int, int) const [{/usr/global/tools/tau		0.06	2	0
[SAMPLE] COMB::detail::set_copy::operator()(int, int) const [{/usr/global/tools/tau	ı/training 0.45	0.45	15	0
[SAMPLE] COMB::detail::set_n1::operator()(int, int) const [{/usr/global/tools/tau/t	raining/a 0.06	0.06	2	0
[SAMPLE]nv_hdl_wrapper_t <false, (*)(commcontext<r="" false,nv_dl_tag<void=""></false,> r <r></r>	mock_pol 0.03	0.03	1	0
[SAMPLE] syscall [{/usr/lib64/libc-2.17.so} {0}]	0.03	0.03	1	0
[SAMPLE] void detail::copy_idxr_idxr <double const,="" detail::indexer_list_idx,="" detail::indexer_list_idx<="" double="" p=""></double>	ole, detail: 0.03	0.03	1	0
[SUMMARY] void COMB::do_cycles <mock_pol, seq_pol="" seq_pol,="">(Comm</mock_pol,>	Context < 0.36	0.36	12	0
[SUMMARY] void COMB::do_cycles <mock_pol, seq_pol="" seq_pol,="">(Comm</mock_pol,>	Context < 0.33	0.33	11	0
[SUMMARY] void COMB::do_cycles <mpi_pol, seq_pol="" seq_pol,="">(CommC</mpi_pol,>	ontext <n 0.39<="" td=""><td>0.39</td><td>13</td><td>0</td></n>	0.39	13	0
[SUMMARY] void COMB::do_cycles <mpi_pol, seq_pol="" seq_pol,="">(CommC</mpi_pol,>	ontext <n 0.36<="" td=""><td>0.36</td><td>12</td><td>0</td></n>	0.36	12	0
► ■ MPI_Barrier()	0.292	0.292	8	0
<pre>MPI_Barrier() [<comm> = <comb_mpi_cart_comm>]</comb_mpi_cart_comm></comm></pre>	0.292	0.292	8	0
TAU: ParaProf: Function Data Window: comb_mpit.ppk	TAU: Pa	raProf: Function Data Window: com	nb_mpit.ppk	
COMB::detail::reset_1::operator()(int, int, int, int) const [{/usr/global/tools/tau/training/apps/COMB_LLNL/Comb/include/comb.hpp} {121}] Metric Name: TAUGPU_TIME Value: Exclusive	Name: .TAU application => [CO COMB::detail::set_1::operator()({/usr/global/tools/tau/training Metric Name: TAUGPU_TIME /alue: Exclusive Jnits: seconds	int, int, int, int) const		o.hpp} {90}]
0.712 max 0.51 min 0.081 std. dev. 0.595 mean 0.57 node 0 0.69 node 1	0.6 0.3 0.436 0.42 0.45	61	0.068	max min std. dev. mean node 0 node 1


CVARs Exposed by MVAPICH2

• • • Metad	ata for n,c,t 0,0,0
Name	Value
MPI Processor Name	lassen710
MPIR_CVAR_CUDA_IPC_THRESHOLD	16384
MPIR_CVAR_GPUDIRECT_LIMIT	2097152
MPIR_CVAR_USE_GPUDIRECT_RECEIVE_LIMIT	2097152
MPI_T CVAR: MPIR_CVAR_ABORT_ON_LEAKED_HANDLES	If true, MPI will call MPI_Abort at MPI_Finalize if any MPI object handles ha
MPI_T CVAR: MPIR_CVAR_ALLGATHERV_PIPELINE_MSG_SIZE	The smallest message size that will be used for the pipelined, large-mes
MPI_T CVAR: MPIR_CVAR_ALLGATHER_COLLECTIVE_ALGORITHM	This CVAR selects proper collective algorithm for allgather operation.
MPI_T CVAR: MPIR_CVAR_ALLGATHER_LONG_MSG_SIZE	For MPI_Allgather and MPI_Allgatherv, the long message algorithm will be
MPI_T CVAR: MPIR_CVAR_ALLGATHER_SHORT_MSG_SIZE	For MPI_Allgather and MPI_Allgatherv, the short message algorithm will b
MPI T CVAR: MPIR CVAR ALLREDUCE COLLECTIVE ALGORITHM	This CVAR selects proper collective algorithm for allreduce operation.
MPI_T CVAR: MPIR_CVAR_ALLREDUCE_SHORT_MSG_SIZE	the short message algorithm will be used if the send buffer size is \leq th
MPI_T CVAR: MPIR_CVAR_ALLTOALLV_COLLECTIVE_ALGORITHM	This CVAR selects proper collective algorithm for alltoally operation.
MPI T CVAR: MPIR CVAR ALLTOALL COLLECTIVE ALGORITHM	This CVAR selects proper collective algorithm for alltoall operation.
MPI_T CVAR: MPIR_CVAR_ALLTOALL_MEDIUM_MSG_SIZE	the medium message algorithm will be used if the per-destination messa
MPI T CVAR: MPIR CVAR ALLTOALL SHORT MSG SIZE	the short message algorithm will be used if the per-destination message
MPI_T_CVAR: MPIR_CVAR_ALLTOALL_THROTTLE	max no. of irecvs/isends posted at a time in some alltoall algorithms. Set
MPI_T CVAR: MPIR_CVAR_ASYNC_PROGRESS	If set to true, MPICH will initiate an additional thread to make asynchrono
MPI_T CVAR: MPIR_CVAR_BCAST_COLLECTIVE_ALGORITHM	This CVAR selects proper collective algorithm for broadcast operation.
MPI_T CVAR: MPIR_CVAR_BCAST_LONG_MSG_SIZE	Let's define short messages as messages with size < MPIR_CVAR_BCAST
MPI_T CVAR: MPIR_CVAR_BCAST_MIN_PROCS	Let's define short messages as messages with size < MPIR_CVAR_BCAST
MPI T CVAR: MPIR CVAR BCAST SHORT MSG SIZE	Let's define short messages as messages with size < MPIR CVAR BCAST
MPI T CVAR: MPIR CVAR CH3 EAGER MAX MSG SIZE	This cvar controls the message size at which CH3 switches from eager to
MPI_T CVAR: MPIR_CVAR_CH3_ENABLE_HCOLL	If true, enable HCOLL collectives.
MPI_T CVAR: MPIR_CVAR_CH3_INTERFACE_HOSTNAME	If non-NULL, this cvar specifies the IP address that other processes shoul.
MPI_T CVAR: MPIR_CVAR_CH3_NOLOCAL	If true, force all processes to operate as though all processes are located
MPI_T CVAR: MPIR_CVAR_CH3_ODD_EVEN_CLIQUES	If true, odd procs on a node are seen as local to each other, and even pr
MPI T CVAR: MPIR CVAR CH3 PORT RANGE	The MPIR CVAR CH3 PORT RANGE environment variable allows you to s
MPI T CVAR: MPIR CVAR CH3 RMA ACTIVE REQ THRESHOLD	Threshold of number of active requests to trigger blocking waiting in op
MPI_T CVAR: MPIR_CVAR_CH3_RMA_DELAY_ISSUING_FOR_PIGGYBACKING	Specify if delay issuing of RMA operations for piggybacking LOCK/UNLOC
MPI_T CVAR: MPIR_CVAR_CH3_RMA_OP_GLOBAL_POOL_SIZE	Size of the Global RMA operations pool (in number of operations) that st
MPI_T CVAR: MPIR_CVAR_CH3_RMA_OP_PIGGYBACK_LOCK_DATA_SIZE	Specify the threshold of data size of a RMA operation which can be piggy.
MPI_T CVAR: MPIR_CVAR_CH3_RMA_OP_WIN_POOL_SIZE	Size of the window-private RMA operations pool (in number of operation
MPI_T CVAR: MPIR_CVAR_CH3_RMA_POKE_PROGRESS_REQ_THRESHOLD	Threshold at which the RMA implementation attempts to complete reque
MPI_T CVAR: MPIR_CVAR_CH3_RMA_SCALABLE_FENCE_PROCESS_NUM	Specify the threshold of switching the algorithm used in FENCE from the
MPI_T CVAR: MPIR_CVAR_CH3_RMA_SLOTS_SIZE	Number of RMA slots during window creation. Each slot contains a linked
MPI_T CVAR: MPIR_CVAR_CH3_RMA_TARGET_GLOBAL_POOL_SIZE	Size of the Global RMA targets pool (in number of targets) that stores inf
MPI_T CVAR: MPIR_CVAR_CH3_RMA_TARGET_LOCK_DATA_BYTES	Size (in bytes) of available lock data this window can provided. If current
MPI_T_CVAR: MPIR_CVAR_CH3_RMA_TARGET_LOCK_ENTRY_WIN_POOL_SIZE	



TAU's ParaProf 3D Browser

^{GON} 45

Download TAU from U. Oregon

http://taucommander.com

http://www.hpclinux.com [OVA for VirtualBox]

https://e4s.io [Extreme-Scale Scientific Software Stack, Containers for HPC]

for more information

Free download, open source, BSD license

PRL, OACISS, University of Oregon, Eugene

www.uoregon.edu

Support Acknowledgements

US Department of Energy (DOE)

- ANL
- Office of Science contracts, ECP
- SciDAC, LBL contracts
- LLNL-LANL-SNL ASC/NNSA contract
- Battelle, PNNL and ORNL contract

Department of Defense (DoD)

• PETTT, HPCMP

National Science Foundation (NSF)

• SI2-SSI, Glassbox

NASA

CEA, France

Partners:

- University of Oregon
- •The Ohio State University
- •ParaTools, Inc.
- •University of Tennessee, Knoxville
- •T.U. Dresden, GWT
- •Jülich Supercomputing Center

Acknowledgment

"This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering, and early testbed platforms, in support of the nation's exascale computing imperative."

