

MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning

Talk at Mellanox booth (SC '19)

by

Dhabaleswar K. (DK) Panda

The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- What's new with MVAPICH2-GDR
- High-Performance Deep Learning (HiDL) with MVAPICH2-GDR
- Conclusions

Overview of the MVAPICH2 Project

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002 (Supercomputing 2002)
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 - Used by more than 3,050 organizations in 89 countries
 - More than 615,000 (> 0.6 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (Nov '19 ranking)
 - 3rd, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China
 - 5th, 448, 448 cores (Frontera) at TACC
 - 8th, 391,680 cores (ABCI) in Japan
 - 14th, 570,020 cores (Neurion) in South Korea and many others
 - Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)
 - <u>http://mvapich.cse.ohio-state.edu</u>
- Empowering Top500 systems for over a decade

Mellanox Booth (SC '19)

Years &

Counting!

2001-2019

Partner in the 5th ranked TACC Frontera System

MVAPICH2 Release Timeline and Downloads

Network Based Computing Laboratory

Architecture of MVAPICH2 Software Family (HPC and DL)

High Performance Parallel Programming Models								
Message Passing Interface	PGAS	Hybrid MPI + X						
(MPI)	(UPC, OpenSHMEM, CAF, UPC++)	(MPI + PGAS + OpenMP/Cilk)						

^{*} Upcoming

MVAPICH2 Software Family

Requirements	Library			
MPI with IB, iWARP, Omni-Path, and RoCE	MVAPICH2			
Advanced MPI Features/Support, OSU INAM, PGAS and MPI+PGAS with IB, Omni-Path, and RoCE	MVAPICH2-X			
MPI with IB, RoCE & GPU and Support for Deep Learning	MVAPICH2-GDR			
HPC Cloud with MPI & IB	MVAPICH2-Virt			
Energy-aware MPI with IB, iWARP and RoCE	MVAPICH2-EA			
MPI Energy Monitoring Tool	OEMT			
InfiniBand Network Analysis and Monitoring	OSU INAM			
Microbenchmarks for Measuring MPI and PGAS Performance	ОМВ			

MVAPICH2-GDR: Optimizing MPI Data Movement on GPU Clusters

Connected as PCIe devices – Flexibility but Complexity

Memory buffers

- 1. Intra-GPU
- Intra-Socket GPU-GPU
- 3. Inter-Socket GPU-GPU
- 4. Inter-Node GPU-GPU
- 5. Intra-Socket GPU-Host
- 6. Inter-Socket GPU-Host
- 7. Inter-Node GPU-Host

8. Inter-Node GPU-GPU with IB adapter on remote socket

and more

- For each path different schemes: Shared_mem, IPC, GPUDirect RDMA, pipeline ...
- Critical for runtimes to optimize data movement while hiding the complexity

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU

- Standard MPI interfaces used for unified data movement
- Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)
- Overlaps data movement from GPU with RDMA transfers

CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3 Releases

- Support for MPI communication from NVIDIA GPU device memory
- High performance RDMA-based inter-node point-to-point communication (GPU-GPU, GPU-Host and Host-GPU)
- High performance intra-node point-to-point communication for multi-GPU adapters/node (GPU-GPU, GPU-Host and Host-GPU)
- Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node communication for multiple GPU adapters/node
- Optimized and tuned collectives for GPU device buffers
- MPI datatype support for point-to-point and collective communication from GPU device buffers
- Unified memory

MVAPICH2-GDR 2.3.2

- Released on 08/08/2019
- Major Features and Enhancements
 - Based on MVAPICH2 2.3.1
 - Support for CUDA 10.1
 - Support for PGI 19.x
 - Enhanced intra-node and inter-node point-to-point performance
 - Enhanced MPI_Allreduce performance for DGX-2 system
 - Enhanced GPU communication support in MPI_THREAD_MULTIPLE mode
 - Enhanced performance of datatype support for GPU-resident data
 - Zero-copy transfer when P2P access is available between GPUs through NVLink/PCIe
 - Enhanced GPU-based point-to-point and collective tuning
 - OpenPOWER systems such as ORNL Summit and LLNL Sierra ABCI system @AIST, Owens and Pitzer systems @Ohio Supercomputer Center
 - Scaled Allreduce to 24,576 Volta GPUs on Summit
 - Enhanced intra-node and inter-node point-to-point performance for DGX-2 and IBM POWER8 and IBM POWER9 systems
 - Enhanced Allreduce performance for DGX-2 and IBM POWER8/POWER9 systems
 - Enhanced small message performance for CUDA-Aware MPI_Put and MPI_Get
 - Flexible support for running TensorFlow (Horovod) jobs

Optimized MVAPICH2-GDR Design

Network Based Computing Laboratory

Application-Level Evaluation (HOOMD-blue)

64K Particles

256K Particles

- Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)
- HoomdBlue Version 1.0.5
 - GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland

- 2X improvement on 32 GPUs nodes
- 30% improvement on 96 GPU nodes (8 GPUs/node)

<u>Cosmo model: http://www2.cosmo-model.org/content</u> /tasks/operational/meteoSwiss/

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee, H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data Movement Processing on Modern GPU-enabled Systems, IPDPS'16

Network Based Computing Laboratory

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- What's new with MVAPICH2-GDR
 - Multi-stream Communication for IPC
 - CMA-based Intra-node Communication Support
 - Support for OpenPower and NVLink with GDRCOPY2
 - Maximal overlap in MPI Datatype Processing
- High-Performance Deep Learning (HiDL) with MVAPICH2-GDR
- Conclusions

Multi-stream Communication using CUDA IPC on OpenPOWER and DGX-1

• Up to **16% higher** Device to Device (D2D) bandwidth on OpenPOWER + NVLink inter-connect

Pt-to-pt (D-D) Bandwidth:

• Up to **30% higher** D2D bandwidth on DGX-1 with NVLink

Pt-to-pt (D-D) Bandwidth:

Benefits of Multi-stream CUDA IPC Design Benefits of Multi-stream CUDA IPC Design 20000 40000 Million Bytes (MB)/second (MB)/second 18000 35000 16% better 30% better 16000 30000 14000 25000 12000 10000 20000 **Million Bytes** 8000 15000 6000 10000 4000 5000 2000 0 0 16K 32K 64K 128K 256K 512K 1M 2M 128K 256K 512K 2M 4M 4M 1M Message Size (Bytes) Message Size (Bytes) 1-stream 4-streams 1-stream 4-streams Available since MVAPICH2-GDR-2.3a **Network Based Computing Laboratory** Mellanox Booth (SC '19)

CMA-based Intra-node Communication Support

Up to **30% lower** Host-to-Host (H2H) latency and **30% higher** H2H Bandwidth •

INTRA-NODE Pt-to-Pt (H2H) BANDWIDTH

Intel Broadwell (E5-2680 v4 @ 3240 GHz) node – 28 cores NVIDIA Tesla K-80 GPU, and Mellanox Connect-X4 EDR HCA CUDA 8.0, Mellanox OFED 4.0 with GPU-Direct-RDMA

Network Based Computing Laboratory

Scalable Host-based Collectives on OpenPOWER (Intra-node Reduce & AlltoAll)

D-to-D Performance on OpenPOWER w/ GDRCopy (NVLink2 + Volta)

Inter-node Latency: 2.18 us (with GDRCopy 2.0)

Inter-node Bandwidth: 23 GB/sec for 4MB (via 2 Port EDR)

Platform: OpenPOWER (POWER9-ppc64le) nodes equipped with a dual-socket CPU, 4 Volta V100 GPUs, and 2port EDR InfiniBand Interconnect

Network Based Computing Laboratory

Mellanox Booth (SC '19)

18

D-to-H & H-to-D Performance on OpenPOWER w/ GDRCopy (NVLink2 + Volta)

H-D INTRA-NODE LATENCY (LARGE)

MV2-GDR

2M

4M

Spectrum MPI

400

200

100

16K

Latency (us) 300

Intra-node D-H Latency: 0.49 us (with GDRCopy)

Spectrum MPI

H-D INTRA-NODE LATENCY

(SMALL)

Message Size (Bytes)

MV2-GDR

Intra-node H-D Bandwidth: 26.09 GB/sec

for 2MB (via NVLINK2)

Intra-node H-D Latency: 0.49 us (with GDRCopy 2.0)

Platform: OpenPOWER (POWER9-ppc64le) nodes equipped with a dual-socket CPU, 4 Volta V100 GPUs, and 2port EDR InfiniBand Interconnect

Network Based Computing Laboratory

4 00 16 32 64 128 256 512 $1 \mathrm{K}$ 2K 4× ×

60

40

20

Latency (us)

Mellanox Booth (SC '19)

32K 64K 128K 256K 512K 1M

Message Size (Bytes)

Managed Memory Performance (OpenPOWER Intra-node)

Network Based Computing Laboratory

Mellanox Booth (SC '19)

20

MVAPICH2 with SHARP Support (Preliminary Results)

Network Based Computing Laboratory

Non-contiguous Data Exchange

Halo data exchange

- Multi-dimensional data
 - Row based organization
 - Contiguous on one dimension
 - Non-contiguous on other dimensions
- Halo data exchange
 - Duplicate the boundary
 - Exchange the boundary in each iteration

MPI Datatype support in MVAPICH2

- Datatypes support in MPI
 - Operate on customized datatypes to improve productivity
 - Enable MPI library to optimize non-contiguous data

At Sender:

•••

```
MPI_Type_vector (n_blocks, n_elements, stride, old_type, &new_type);
MPI_Type_commit(&new_type);
```

MPI_Send(s_buf, size, new_type, dest, tag, MPI_COMM_WORLD);

- Inside MVAPICH2
 - Use datatype specific CUDA Kernels to pack data in chunks
 - Efficiently move data between nodes using RDMA
 - In progress currently optimizes vector and hindexed datatypes
 - Transparent to the user

H. Wang, S. Potluri, D. Bureddy, C. Rosales and D. K. Panda, GPU-aware MPI on RDMA-Enabled Clusters: Design, Implementation and Evaluation, IEEE Transactions on Parallel and Distributed Systems, Vol. 25, No. 10, pp. 2595-2605, Oct 2014.

Network Based Computing Laboratory

MPI Datatype Processing (Computation Optimization)

- Comprehensive support
 - Targeted kernels for regular datatypes vector, subarray, indexed_block
 - Generic kernels for all other irregular datatypes
- Separate non-blocking stream for kernels launched by MPI library
 - Avoids stream conflicts with application kernels
- Flexible set of parameters for users to tune kernels
 - Vector
 - MV2_CUDA_KERNEL_VECTOR_TIDBLK_SIZE
 - MV2_CUDA_KERNEL_VECTOR_YSIZE
 - Subarray
 - MV2_CUDA_KERNEL_SUBARR_TIDBLK_SIZE
 - MV2_CUDA_KERNEL_SUBARR_XDIM
 - MV2_CUDA_KERNEL_SUBARR_YDIM
 - MV2_CUDA_KERNEL_SUBARR_ZDIM
 - Indexed_block
 - MV2_CUDA_KERNEL_IDXBLK_XDIM

MPI Datatype Processing (Communication Optimization)

Common Scenario

MPI_Isend (A,.. Datatype,...) MPI_Isend (B,.. Datatype,...) MPI_Isend (C,.. Datatype,...) MPI_Isend (D,.. Datatype,...)

MPI_Waitall (...);

...

*A, B...contain non-contiguous MPI Datatype

Waste of computing resources on CPU and GPU

Application: COMB

Run Scripts pushed to COMB Github repo: https://github.com/LLNL/Comb/pull/2

L6 GPUs on POWER9 system (test Comm mpi Mesh cuda Device Buffers mpi_type)										
	pre- comm	post-recv	post- send	wait-recv	wait- send	post- comm	start-up	test- comm	bench- comm	
Spectrum MPI 10.3	0.0001	0.0000	1.6021	1.7204	0.0112	0.0001	0.0004	7.7383	83.6229	18 ×
MVAPICH2-GDR 2.3.2	0.0001	0.0000	0.0862	0.0871	0.0018	0.0001	0.0009	0.3558	4.4396	27.
MVAPICH2-GDR 2.3.3 (Upcoming)	0.0001	0.0000	0.0030	0.0032	0.0001	0.0001	0.0009	0.0133	0.1602	Jerx

Improvements due to enhanced support for GPU-kernel based packing/unpacking routines

Network Based Computing Laboratory

Application: HYPRE - BoomerAMG

HYPRE - BoomerAMG

RUN MVAPICH2-GDR 2.3.2:

export MV2_USE_CUDA=1 MV2_USE_GDRCOPY=0 MV2_USE_RDMA_CM=0 export MV2_USE_GPUDIRECT_LOOPBACK=0 MV2_HYBRID_BINDING_POLICY=spread MV2_IBA_HCA=mlx5_0:mlx5_3 OMP_NUM_THREADS=20 lrun -n 128 -N 32 mpibind ./ij -P 8 4 4 -n 50 50 50 -pmis -Pmx 8 -keepT 1 -rlx 18

RUN Spectrum-MPI 10.3.0.1:

OMP_NUM_THREADS=20 lrun -n 128 -N 32 --smpiargs "-gpu --disable_gdr" mpibind ./ij -P 8 4 4 -n 50 50 50 -pmis -Pmx 8 -keepT 1 -rlx 18

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- What's new with MVAPICH2-GDR
- High-Performance Deep Learning (HiDL) with MVAPICH2-GDR
 - Benefits of CUDA-Aware MPI with TensorFlow
 - Optimized Collectives for Deep Learning
 - Out-of-core DNN Training
- Conclusions

Data Parallel Training with TensorFlow (TF)

- Need to understand several options currently available •
- gRPC (official support)
 - Open-source can be enhanced by others
 - Accelerated gRPC (add RDMA to gRPC)
- gRPC+X •
 - Use gRPC for bootstrap and rendezvous
 - Actual communication is in "X"
 - $X \rightarrow$ MPI, Verbs, GPUDirect RDMA (GDR), etc.
- No-gRPC ٠
 - Baidu the first one to use MPI Collectives for TF
 - Horovod Use NCCL, or MPI, or any other future library (e.g. IBM DDL support recently added)

gRPC

A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, "Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation", CCGrid '19. https://arxiv.org/abs/1810.11112

Exploiting CUDA-Aware MPI for TensorFlow (Horovod)

- MVAPICH2-GDR offers excellent performance via advanced designs for MPI_Allreduce.
- Up to 11% better performance on the RI2 cluster (16 GPUs)
- Near-ideal 98% scaling efficiency

🖽 Horovod-MPI 🛛 🖾 Horovod-NCCL2 🖓 Horovod-MPI-Opt (Proposed) 🗧 Ideal

A. A. Awan et al., "Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation", CCGrid '19, <u>https://arxiv.org/abs/1810.11112</u>

Network Based Computing Laboratory

MVAPICH2-GDR vs. NCCL2: Allreduce Operation

- Optimized designs in MVAPICH2-GDR 2.3 offer better/comparable performance for most cases
- MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs

Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect

MVAPICH2-GDR vs. NCCL2: Allreduce Optimization (DGX-2)

- Optimized designs in upcoming MVAPICH2-GDR offer better performance for most cases
- MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on a DGX-2 machine

Platform: Nvidia DGX-2 system @ PSC (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2

MVAPICH2-GDR: MPI_Allreduce (Device Buffers) on Summit

- Optimized designs in MVAPICH2-GDR offer better performance for most cases
- MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) up to 1,536 GPUs

Platform: Dual-socket IBM POWER9 CPU, 6 NVIDIA Volta V100 GPUs, and 2-port InfiniBand EDR Interconnect

Distributed Training with TensorFlow and MVAPICH2-GDR on Summit

- ResNet-50 Training using TensorFlow benchmark on SUMMIT -- 1536 Volta GPUs!
- 1,281,167 (1.2 mil.) images
- Time/epoch = 3.6 seconds
- Total Time (90 epochs)
 = 3.6 x 90 = 332 seconds =

5.5 minutes!

*We observed errors for NCCL2 beyond 96 GPUs

Platform: The Summit Supercomputer (#1 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 9.2

New Benchmark for Image Segmentation on Summit

- Near-linear scaling may be achieved by tuning Horovod/MPI
 - Optimizing MPI/Horovod towards large message sizes for high-resolution images
- Develop a generic Image Segmentation benchmark
- Tuned DeepLabV3+ model using the benchmark and Horovod, up to 1.3X better than default

*Anthony et al., "Scaling Semantic Image Segmentation using Tensorflow and MVAPICH2-GDR on HPC Systems" (Submission under review)

OSU-Caffe: Scalable Deep Learning

- Caffe : A flexible and layered Deep Learning framework.
- Benefits and Weaknesses
 - Multi-GPU Training within a single node
 - Performance degradation for GPUs across different sockets
 - Limited Scale-out
- OSU-Caffe: MPI-based Parallel Training
 - Enable Scale-up (within a node) and Scale-out (across multi-GPU nodes)
 - Scale-out on 64 GPUs for training CIFAR-10 network on CIFAR-10 dataset
 - Scale-out on 128 GPUs for training GoogLeNet network on ImageNet dataset

OSU-Caffe publicly available from http://hidl.cse.ohio-state.edu/

GoogLeNet (ImageNet) on 128 GPUs

Network Based Computing Laboratory

Scalability and Large (Out-of-core) Models?

- Large DNNs cannot be trained on GPUs due to memory limitation!
 - ResNet-50 for Image Recognition but current frameworks can only go up to a small batch size of 45
 - Next generation models: Neural Machine Translation (NMT)
 - Ridiculously large (billions of parameters),
 - Will require even more memory!
 - Can we exploit new software features in CUDA 8/9 and hardware mechanisms in Pascal/Volta GPUs?
- General intuition is that managed allocations "will be" slow!
 - The proposed framework called OC-Caffe (Out-of-Core Caffe) shows the potential of managed memory designs that can provide performance with negligible/no overhead.
- OC-Caffe-Opt: up to 80% better than Intel-optimized CPU Caffe for ResNet-50 training on the Volta V100 GPU with CUDA9 and CUDNN7

A. A. Awan, C.-H. Chu, H. Subramoni, X. Lu, and D. K. Panda, OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training, HiPC '18

HyPar-Flow (HF): Hybrid Parallelism for TensorFlow

- CPU based results
 - AMD EPYC
 - Intel Xeon
- Excellent speedups for
 - VGG-19
 - ResNet-110
 - ResNet-1000 (1k layers)
- Able to train "future" models
 - E.g. ResNet-5000 (a synthetic
 5000-layer model we
 benchmarked)

110x speedup on 128 Intel Xeon Skylake nodes (TACC Stampede2 Cluster)

*Awan et al., "HyPar-Flow: Exploiting MPI and Keras for Hybrid Parallel Training of TensorFlow models", arXiv '19. https://arxiv.org/pdf/1911.05146.pdf

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- What's new with MVAPICH2-GDR
- High-Performance Deep Learning (HiDL) with MVAPICH2-GDR
- Conclusions

Conclusions

- MVAPICH2-GDR Library provides optimized MPI communication on InfiniBand and RoCE clusters with GPUs
- Supports both X86 and OpenPower with NVLink
- Takes advantage of CUDA features like IPC and GPUDirect RDMA families
- Allows flexible solutions for streaming applications with GPUs
- Provides optimized solutions (scale-up and scale-out) for High-Performance Deep Learning

Commercial Support for MVAPICH2, HiBD, and HiDL Libraries

- Supported through X-ScaleSolutions (<u>http://x-scalesolutions.com</u>)
- Benefits:
 - Help and guidance with installation of the library
 - Platform-specific optimizations and tuning
 - Timely support for operational issues encountered with the library
 - Web portal interface to submit issues and tracking their progress
 - Advanced debugging techniques
 - Application-specific optimizations and tuning
 - Obtaining guidelines on best practices
 - Periodic information on major fixes and updates
 - Information on major releases
 - Help with upgrading to the latest release
 - Flexible Service Level Agreements
- Support provided to Lawrence Livermore National Laboratory (LLNL) for the last two years

Multiple Events at SC '19

- Presentations at OSU and X-Scale Booth (#2094)
 - Members of the MVAPICH, HiBD and HiDL members
 - External speakers
- Presentations at SC main program (Tutorials, Workshops, BoFs, Posters, and Doctoral Showcase)
- Presentation at many other booths (Mellanox, Intel, Microsoft, and AWS) and satellite events
- Complete details available at

http://mvapich.cse.ohio-state.edu/conference/752/talks/

Funding Acknowledgments

Funding Support by

Personnel Acknowledgments

Current Students (Graduate)

A. Awan (Ph.D.)

- M. Bayatpour (Ph.D.) _
- C.-H. Chu (Ph.D.) _
- J. Hashmi (Ph.D.) _
- A. Jain (Ph.D.) _
- K. S. Kandadi (M.S.) _

Past Students

- A. Augustine (M.S.)
- P. Balaji (Ph.D.)
- R. Biswas (M.S.) _
- S. Bhagvat (M.S.)
- A. Bhat (M.S.) _
- D. Buntinas (Ph.D.)
- L. Chai (Ph.D.) _
- B. Chandrasekharan (M.S.) _
- S. Chakraborthy (Ph.D.) _
- N. Dandapanthula (M.S.)
- V. Dhanraj (M.S.) _

Past Post-Docs

- D. Baneriee
- X. Besseron
- H.-W. Jin _

- Kamal Raj (M.S.) _ K. S. Khorassani (Ph.D.) _ P. Kousha (Ph.D.) _
 - A. Quentin (Ph.D.) _
 - B. Ramesh (M. S.) _
 - S. Xu (M.S.) _

_

_

_

- T. Gangadharappa (M.S.) K. Gopalakrishnan (M.S.) W. Huang (Ph.D.)
- W. Jiang (M.S.) _
- J. Jose (Ph.D.) _
- S. Kini (M.S.) _
- M. Koop (Ph.D.) _
- K. Kulkarni (M.S.) _ _
- _

J. Lin

M. Luo

E. Mancini

- _

_

_

_

- _ _ _ _
 - _
- R. Kumar (M.S.)
- S. Krishnamoorthy (M.S.)
- K. Kandalla (Ph.D.)
- M. Li (Ph.D.)

P. Lai (M.S.) J. Liu (Ph.D.) M. Luo (Ph.D.) A. Mamidala (Ph.D.) G. Marsh (M.S.)

Q. Zhou (Ph.D.)

_

- V. Meshram (M.S.)
- A. Moody (M.S.)
- S. Naravula (Ph.D.)
- R. Noronha (Ph.D.) _
- X. Ouvang (Ph.D.) _
- S. Pai (M.S.) _
- S. Potluri (Ph.D.) _
 - S. Marcarelli _ J. Vienne
 - H. Wang

- Current Research Scientist H. Subramoni _ Current Students (Undergraduate) V. Gangal (B.S.) N. Sarkauskas (B.S.) _
 - R. Rajachandrasekar (Ph.D.) _ D. Shankar (Ph.D.) _ G. Santhanaraman (Ph.D.) _ A. Singh (Ph.D.) _ _
 - J. Sridhar (M.S.)
 - S. Sur (Ph.D.) _
- H. Subramoni (Ph.D.) _
- K. Vaidyanathan (Ph.D.) _
- A. Vishnu (Ph.D.) _
- J. Wu (Ph.D.) _
- W. Yu (Ph.D.) _
- J. Zhang (Ph.D.) _

Current Post-doc

- M. S. Ghazimeersaeed
- A. Ruhela
- K. Manian

Current Research Specialist

J. Smith

Past Research Scientist

- K. Hamidouche _
- S. Sur _
- X. Lu _

Past Programmers

- D. Bureddv _
- J. Perkins _

Past Research Specialist

M. Arnold _

Thank You!

panda@cse.ohio-state.edu

https://twitter.com/mvapich

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project <u>http://mvapich.cse.ohio-state.edu/</u>

High-Performance Big Data

The High-Performance Big Data Project http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project <u>http://hidl.cse.ohio-state.edu/</u>

Network Based Computing Laboratory