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Big Data 
(Hadoop, Spark, 

HBase, 
Memcached, 

etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, 

etc.)

HPC 
(MPI, RDMA, 
Lustre, etc.)

Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big 
Data, and Deep Learning!

Increasing Need to Run these 
applications on the Cloud!!
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• Early (2014) frameworks used a single fast GPU

– As DNNs became larger, faster and better GPUs became available

– At the same time, parallel (multi-GPU) training gained traction as well

• Today

– Parallel training on multiple GPUs is being supported by most frameworks

– Distributed (multiple nodes) training is still upcoming 

• A lot of fragmentation in the efforts (MPI, Big-Data, NCCL, Gloo, etc.)

Trends in Training for Deep Learning frameworks
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• Scale-up: Intra-node Communication

– Many improvements like:

• NVIDIA cuDNN, cuBLAS, NCCL, etc.

• CUDA 9 Co-operative Groups

• Scale-out: Inter-node Communication

– DL Frameworks – most are optimized for 

single-node only

– Distributed (Parallel) Training is an 

emerging trend

• OSU-Caffe – MPI-based

• Microsoft CNTK – MPI/NCCL2

• Google TensorFlow – gRPC-based/MPI/NCCL2

• Facebook Caffe2 – Hybrid (NCCL2/Gloo/MPI)

Scale-up and Scale-out
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(1) Prepare 
Datasets @Scale

(2) Deep 
Learning @Scale

(3) Non-deep 
learning 

analytics @Scale

(4) Apply ML 
model @Scale

• Deep Learning over Big Data (DLoBD) is one of the most efficient analyzing paradigms

• More and more deep learning tools or libraries (e.g., Caffe, TensorFlow) start running over big 

data stacks, such as Apache Hadoop and Spark

• Benefits of the DLoBD approach

– Easily build a powerful data analytics pipeline

• E.g., Flickr DL/ML Pipeline, “How Deep Learning Powers Flickr”, http://bit.ly/1KIDfof

– Better data locality

– Efficient resource sharing and cost effective

Deep Learning over Big Data (DLoBD)
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Holistic Evaluation is Important!!
DL	Applications	(Image	Recognition,	Speech	Processing,	etc.)

DL	Frameworks	(Caffe,	TensorFlow,	etc.)

BLAS	Libraries

Hardware

Many-core	GPU	
(Pascal	P100)

Generic	
Convolution	Layer

MKL	Optimized
Convolution	Layer

MKL	2017 cuDNN/cuBLAS

Multi-/Many-core	
(Xeon,	Xeon	Phi)

cuDNN Optimized
Convolution	Layer

Other	BLAS	Libraries

OpenBLASATLAS

Other	Processors

• My framework is faster than 

your framework!

• This needs to be understood 

in a holistic way.

• Performance depends on 

the entire execution 

environment (the full stack)

• Isolated view of 

performance is not helpful

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training on 
Modern Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.
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1. What are the fundamental 

issues in designing DL 

frameworks?

– Memory Requirements

– Computation

Requirements

– Communication Overhead

2. Why do we need to support 

distributed training?

– To overcome the limits of 

single-node training

– To better utilize hundreds 

of existing HPC Clusters

Research Challenges to Exploit HPC Technologies

InfiniBand GPUCPU

CNTK

Gradient 
Aggregation

Model Propagation
Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe

Caffe2 TensorFlow MXNet

Communication Runtimes to support 
Distributed Training

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

1

2
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3. What are the new design challenges 

brought forward by DL frameworks for 

Communication runtimes?

– Large Message Collective

Communication and Reductions

– GPU Buffers (CUDA-Awareness)

4. Can a Co-design approach help in 

achieving Scale-up and Scale-out efficiently?

– Co-Design the support at Runtime 

level and Exploit it at the DL 

Framework level

– What performance benefits can 

be observed? 

– What needs to be fixed at the 

communication runtime layer?

5. 

Research Challenges to Exploit HPC Technologies (Cont’d)

CUDA-
Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
Aggregation

Model Propagation
Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe

Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

3

4 Co-Design 
Opportunities
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• MPI-driven Deep Learning

• Co-designing Deep Learning Stacks with High-Performance MPI

• Accelerating TensorFlow on HPC Systems

• Accelerating Big Data Stacks 

• Efficient Deep Learning over Big Data

Multiple Approaches taken up by OSU
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Data Parallel Deep Learning and MPI Collectives
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• Major MPI Collectives

involved in Designing 

distributed frameworks

• MPI_Bcast – required for 

DNN parameter exchange

• MPI_Reduce – needed for 

gradient accumulation 

from multiple solvers

• MPI_Allreduce – use just 

one Allreduce instead of 

Reduce and Broadcast

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU 
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,950 organizations in 86 countries

– More than 505,000 (> 0.5 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Jul ‘18 ranking)

• 2nd ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 12th, 556,104 cores (Oakforest-PACS) in Japan

• 15th, 367,024 cores (Stampede2) at TACC

• 24th, 241,108-core (Pleiades) at NASA and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

Partner in the upcoming TACC Frontera System

http://mvapich.cse.ohio-state.edu/
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Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-

point 

Primitives

Collectives 

Algorithms

Energy-

Awareness

Remote 

Memory 

Access

I/O and

File Systems

Fault

Tolerance
Virtualization

Active 

Messages
Job Startup

Introspection 

& Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC UMR ODP
SR-

IOV

Multi 

Rail

Transport Mechanisms

Shared 

Memory
CMA IVSHMEM

Modern Features

MCDRAM* NVLink* CAPI*

* Upcoming

XPMEM*
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MVAPICH2-GDR-2.3
Intel Haswell  (E5-2687W @ 3.10 GHz) node - 20 cores

NVIDIA Volta V100 GPU
Mellanox Connect-X4 EDR HCA

CUDA 9.0
Mellanox OFED 4.0 with GPU-Direct-RDMA

10x

9x

Optimized MVAPICH2-GDR Design 

1.85us
11X
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• MVAPICH2-GDR offers excellent 

performance via advanced designs for 

MPI_Allreduce.

• Up to 22% better performance on 

Wilkes2 cluster (16 GPUs)

Exploiting CUDA-Aware MPI for TensorFlow (Horovod)
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• 16 GPUs (4 nodes) MVAPICH2-GDR vs. Baidu-Allreduce and OpenMPI 3.0

MVAPICH2-GDR: Allreduce Comparison with Baidu and OpenMPI

*Available since MVAPICH2-GDR 2.3a

~30X better
MV2 is ~2X better 

than Baidu

~10X better OpenMPI is ~5X slower 

than Baidu

~4X better
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MVAPICH2-GDR vs. NCCL2 – Reduce Operation

• Optimized designs in MVAPICH2-GDR 2.3b* offer better/comparable performance for most cases 

• MPI_Reduce (MVAPICH2-GDR) vs. ncclReduce (NCCL2) on 16 GPUs

*Will be available with upcoming MVAPICH2-GDR 2.3b
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Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect 

1

10

100

1000

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

La
te

n
cy

 (
u

s)

Message Size (Bytes)

MVAPICH2-GDR NCCL2

~2.5X better



OSU-Booth (SC ’18) 17Network Based Computing Laboratory

MVAPICH2-GDR vs. NCCL2 – Allreduce Operation

• Optimized designs in MVAPICH2-GDR 2.3rc1 offer better/comparable performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs
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• Caffe : A flexible and layered Deep Learning framework.

• Benefits and Weaknesses

– Multi-GPU Training within a single node

– Performance degradation for GPUs across different 

sockets 

– Limited Scale-out

• OSU-Caffe: MPI-based Parallel Training 

– Enable Scale-up (within a node) and Scale-out (across 

multi-GPU nodes)

– Scale-out on 64 GPUs for training CIFAR-10 network on 

CIFAR-10 dataset

– Scale-out on 128 GPUs for training GoogLeNet network on 

ImageNet dataset

OSU-Caffe: Scalable Deep Learning
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Invalid use case
OSU-Caffe publicly available from

http://hidl.cse.ohio-state.edu/

http://hidl.cse.ohio-state.edu/
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• MPI-driven Deep Learning

• Co-designing Deep Learning Stacks with High-Performance MPI

• Accelerating TensorFlow on HPC Systems

• Accelerating Big Data Stacks 

• Efficient Deep Learning over Big Data

Multiple Approaches taken up by OSU
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Performance Benefits for RDMA-gRPC with Micro-Benchmark

RDMA-gRPC RPC Latency

• gRPC-RDMA Latency on SDSC-Comet-FDR
– Up to 2.7x performance speedup over IPoIB for Latency for small messages

– Up to 2.8x performance speedup over IPoIB for Latency for medium messages

– Up to 2.5x performance speedup over IPoIB for Latency for large messages
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R. Biswas, X. Lu, and D. K. Panda, Accelerating gRPC and TensorFlow with RDMA for High-Performance Deep Learning over InfiniBand, HiPC ‘18.
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Performance Benefit for RDMA-TensorFlow (Inception3)

• TensorFlow Inception3 performance evaluation on an IB EDR cluster

– Up to 20% performance speedup over Default gRPC (IPoIB) for 8 GPUs

– Up to 34% performance speedup over Default gRPC (IPoIB) for 16 GPUs

– Up to 37% performance speedup over Default gRPC  (IPoIB) for 24 GPUs
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R. Biswas, X. Lu, and D. K. Panda,
Accelerating TensorFlow with 
Adaptive RDMA-based gRPC.  HiPC ‘18
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• MPI-driven Deep Learning

• Co-designing Deep Learning Stacks with High-Performance MPI

• Accelerating TensorFlow on HPC Systems

• Accelerating Big Data Stacks 

• Efficient Deep Learning over Big Data

Multiple Approaches taken up by OSU
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• RDMA for Apache Spark 

• RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)

– Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions

• RDMA for Apache Kafka

• RDMA for Apache HBase

• RDMA for Memcached (RDMA-Memcached)

• RDMA for Apache Hadoop 1.x (RDMA-Hadoop)

• OSU HiBD-Benchmarks (OHB)

– HDFS, Memcached, HBase, and Spark Micro-benchmarks

• http://hibd.cse.ohio-state.edu

• Users Base: 290 organizations from 34 countries

• More than 28,200 downloads from the project site

The High-Performance Big Data (HiBD) Project

Available for InfiniBand and RoCE

Also run on Ethernet

Available for x86 and OpenPOWER

Support for Singularity and Docker

http://hibd.cse.ohio-state.edu/
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Performance Numbers of RDMA for Apache Hadoop 2.x –
RandomWriter & TeraGen in OSU-RI2 (EDR)

Cluster with 8 Nodes with a total of 64 maps

• RandomWriter

– 3x improvement over IPoIB 

for 80-160 GB file size

• TeraGen

– 4x improvement over IPoIB for 

80-240 GB file size

RandomWriter TeraGen

Reduced by 3x Reduced by 4x
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• InfiniBand FDR, SSD, 32/64 Worker Nodes, 768/1536 Cores, (768/1536M 768/1536R)

• RDMA-based design for Spark 1.5.1 

• RDMA vs. IPoIB with 768/1536 concurrent tasks, single SSD per node. 

– 32 nodes/768 cores: Total time reduced by 37% over IPoIB (56Gbps) 

– 64 nodes/1536 cores: Total time reduced by 43% over IPoIB (56Gbps) 

Performance Evaluation on SDSC Comet – HiBench PageRank

32 Worker Nodes, 768 cores, PageRank Total Time 64 Worker Nodes, 1536 cores, PageRank Total Time
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X. Lu, H. Shi, M. H. Javed, R. Biswas, and D. K. Panda, Characterizing Deep Learning over Big Data (DLoBD) Stacks on RDMA-capable Networks, HotI 2017.

High-Performance Deep Learning over Big Data (DLoBD) Stacks
• Challenges of Deep Learning over Big Data 

(DLoBD)
▪ Can RDMA-based designs in DLoBD stacks improve 

performance, scalability, and resource utilization 
on high-performance interconnects, GPUs, and 
multi-core CPUs? 

▪ What are the performance characteristics of 
representative DLoBD stacks on RDMA networks?

• Characterization on DLoBD Stacks
▪ CaffeOnSpark, TensorFlowOnSpark, and BigDL
▪ IPoIB vs. RDMA; In-band communication vs. Out-

of-band communication; CPU vs. GPU; etc.
▪ Performance, accuracy, scalability, and resource 

utilization 
▪ RDMA-based DLoBD stacks (e.g., BigDL over 

RDMA-Spark) can achieve 2.6x speedup compared 
to the IPoIB based scheme, while maintain similar 
accuracy
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

panda@cse.ohio-state.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu

